Published online by Cambridge University Press: 29 March 2006
The response of the ‘sliced-cylinder’ laboratory model for the wind-driven ocean circulation is studied here in part 2 for the case of an oscillatory ‘wind’ stress. The model consists of a rapidly rotating right cylinder with a planar sloping bottom. This basin geometry contains no closed geostrophic contours, so that low frequency topographic Rossby wave modes possessing mean vorticity exist in the sliced-cylinder model by the physical analogy between topographic vortex stretching and the β effect for large-scale planetary flows. The interior flow in the laboratory model is driven by the time-dependent Ekman-layer suction produced by the periodic relative angular velocity of the upper lid. The frequency of the forcing is sufficiently small that the interior motion is quasi-geostrophic with the horizontal velocities being independent of depth. Simple two-dimensional analytic and numerical models are developed and compared very favourably with the laboratory results. The observed horizontal velocity field exhibits both (i) westward intensification and decreased horizontal scale when the forcing frequency is decreased, and (ii) a significant resonant magnification when the forcing frequency is tuned to the natural frequency of one of the lower inviscid topographic Rossby wave modes. The observed westward phase speed of the driven motion is accurately predicted and shows little dependence on the amplitude of the forcing. The instantaneous and mean Lagrangian fluid particle trajectories were measured in the laboratory model. The general derivation by Moore (1970) of the governing equations for the mean Lagrangian motion are extended to incorporate forcing and Ekman-layer dissipation. The results suggest that the mean Lagrangian flow should be significantly reduced near resonant frequencies, since the mean Eulerian motion is partially offset by the Stokes drift associated with the topographic Rossby wave modes. This result is consistent with the small observed amplitude of the mean Lagrangian motion. Also presented are the results for a laboratory experiment conducted using a combined steady and oscillatory ‘wind’ stress.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.