Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-17T03:02:45.763Z Has data issue: false hasContentIssue false

A simple model of the mutual interaction of parallel flow and cellular motion in a shear layer applied to the finite amplitude instability of plane Couette flow

Published online by Cambridge University Press:  19 April 2006

J. Steppeler
Affiliation:
Deutscher Wetterdienst, Offenbach, BRD

Abstract

The disturbing motion of plane Couette and Poiseuille flow is described using three parameters: two amplitudes corresponding to the disturbance of the parallel flow and the cellular motion, respectively, and the angle ϕ0 which defines the orientation of the vortex blobs with respect to the parallel flow. Equations of motion for these parameters are obtained using a Ritz-Galerkin method. For Reynolds numbers above a critical value sufficiently big disturbances will grow until a steady finite amplitude state is achieved. The energy of the disturbance remains finite, in spite of the highly truncated field representation using only three parameters. This is possible because of the nonlinear dependence of the field functions on ϕ0. The critical values of Reynolds number, above which finite amplitude states exist, are computed for the plane Couette flow and the Poiseuille channel flow.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coffee, T. 1977 J. Fluid Mech. 83, 401.
Davey, A. 1973 J. Fluid Mech. 57, 369.
Eason, E. D. 1976 Int. J. Numerical Methods in Engng 10, 1021.
Finlayson, B. A. 1972 The Method of Weighted Residuals and Variational Principles. Academic Press.
Gallagher, A. P. & Mercer, A. McD. 1964 J. Fluid Mech. 13, 91.
Grohne, D. 1954 Z. Angew. Math. Mech. 34, 344.
Herbert, TH. 1976 Proc. 5th Int. Conf. Num. Meth. Fluid Dyn., p. 235. Springer.
Lorfnz, E. N. 1963 J. Atm. Sci. 20, 130.
Ogura, Y. & Yagihashi, A. 1969 J. Meteor. Soc. Japan 47, 437.
Orszag, S. A. 1971 J. Fluid Mech. 50, 689.
Pekeris, C. L. & Shkoller, B. 1969a J. Fluid Mech. 39, 611.
Pekeris, C. L. & Shkoller, B. 1969b J. Fluid Mech. 39, 629.
Pekeris, C. L. & Shkoller, B. 1971 Proc. Nat. Acad. Sci. 68, 197.
Reynolds, W. C. & Potter, M. C. 1967 J. Fluid Mech. 27, 465.
Steppeler, J. 1978 Int. J. Computers and Fluids 6, 2S1.
Stuart, J. T. 1958 J. Fluid Mech. 4, 1.
Stuart, J. T. 1960 J. Fluid Mech. 9, 353.
Vichenevetsky, R. 1969 IEEE Transactions on Computers C, 18, 499.
Watson, J. 1960 J. Fluid Mech. 9, 371.
Zahn, J. P., Toomre, J., Spiegel, E. A. & Gough, D. O. 1974 J. Fluid Mech. 64, 319.