Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T20:47:45.781Z Has data issue: false hasContentIssue false

The rheology of dilute suspensions of slender rods in weak flows

Published online by Cambridge University Press:  21 April 2006

Douglas H. Berry
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
William B. Russel
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA

Abstract

This paper describes the consequences of pair interactions in dilute suspensions of rigid rods of length 2l and radius a subjected to weak, steady shear flows. The combination of hydrodynamic and Brownian forces increases alignment with the flow, thereby enhancing the shear thinning and strain thickening expected from dilute theories. The theory is asymptotic in Pe [Lt ] 1 and ε = (ln 2l/a)−1 [Lt ] 1 but requires an ad hoc approximation to simplify the form of the hydrodynamic interactions and the rod-rod excluded volume. The theoretical predictions of the Huggins coefficient in simple shear flow are compared with data in the literature for Xanthan gum, a semi-rigid biopolymer. Comparison with semi-dilute theories emphasizes the fundamentally different nature of the interactions in the two regimes and indicates that the transition between the two lies in the range 1.5 [les ][η]0n [les ] 6.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1970a The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545.Google Scholar
Batchelor, G. K. 1970b Slender body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419.Google Scholar
Batchelor, G. K. 1971 The stress generated in a non-dilute suspension of elongated particles by a pure straining motion. J. Fluid Mech. 46, 813.Google Scholar
Batchelor, G. K. 1976 Developments in microhydrodynamics. In Theoretical and Applied Mechanics (ed. W. T. Koiter), pp. 3355. North-Holland.
Batchelor, G. K. 1977 The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97.Google Scholar
Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order. c2. J. Fluid Mech. 56, 375.Google Scholar
Berry, D. H. 1982 The rheological effects of hydrodynamic and electrostatic interactions in solutions of semi-rigid polyelectrolytes. Ph.D. dissertation, Princeton University.
Brenner, H. 1974 Rheology of a dilute suspension of axisymmetric Brownian particles. Intl J. Multiphase Flow 1, 195.Google Scholar
Brenner, H. & Condiff, D. W. 1974 Transport mechanics in systems of orientable particles. IV. Convective transport. J. Colloid Interface Sci. 47, 199.Google Scholar
Chauveteau, G. 1982 Rodlike polymer solution flow through fine pores: Influence of pore size on rheological behavior. J. Rheol. 26, 111.CrossRefGoogle Scholar
Chu, S.-G., Venkatraman, S., Berry, G. C. & Einaga, Y. 1981 Rheological properties of rodlike polymers in solution. 1. Linear and nonlinear steady state behavior. Macromol. 14, 939.Google Scholar
Doi, M. & Edwards, S. F. 1978a Dynamics of rodlike macromolecules in concentrated solution. Part 1. J. Chem. Soc. Faraday Trans. I 74, 560.Google Scholar
Doi, M. & Edwards, S. F. 1978b Dynamics of rodlike macromolecules in concentrated solution. Part 2. J. Chem. Soc. Faraday Trans. I 74, 918.Google Scholar
Felderhof, B. U. 1976 Rheology of polymer suspensions. II. Translation, rotation, and viscosity. Physica A 82, 596.Google Scholar
Giesekus, H. 1962 Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmungen sämtliche Normalspannungskomponenten verschieden grosse sind. Rheol. Acta. 20, 50.Google Scholar
Hinch, E. J. 1977 An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695.Google Scholar
Hinch, E. J. & Leal, L. G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52, 683.Google Scholar
Holzwarth, G. 1978 Molecular weight of Xanthan polysaccharide. Carbohydr. Res. 66, 173.Google Scholar
Holzwarth, G. & Prestridge, E. K. 1978 Multistranded helix in Xanthan polysaccharide. Science 197, 757.Google Scholar
Jain, S. & Cohen, C. 1981 Rheology of rodlike macromolecules in semidilute solutions. Macromol. 14, 759.Google Scholar
Moan, M. & Wolff, C. 1974 Etude viscosimetrique de solutions de polyelectrolytes par dilution isoionique. Effet de la densité de charge sur la conformation du polyion. Die Makromolekular Chemie 175, 2881.Google Scholar
Pecora, R. 1985 Dynamics of rodlike macromolecules in semi-dilute solutions. J. Polymer. Sci. C: 73, 83.Google Scholar
Rallison, J. M. & Hinch, E. J. 1986 The effect of particle interactions on dynamic light scattering from a dilute suspension. J. Fluid Mech. 167, 131.Google Scholar
Russel, W. B. 1979 The low-shear limit of the effective viscosity of a solution of charged macromolecules. J. Fluid Mech. 92, 40.Google Scholar
Russel, W. B. 1980 A review of the role of colloidal forces in the rheology of suspensions. J. Rheol. 24, 287.Google Scholar
Scheraga, H. A. 1955 Non-Newtonian viscosity of solutions of ellipsoidal particles. J. Chem. Phys. 23, 1526.Google Scholar
Whitcomb, P. J. & Macosko, C. W. 1978 Rheology of Xanthan gum. J. Rheol. 22, 493.Google Scholar