Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:31:14.476Z Has data issue: false hasContentIssue false

Quantitative measurement of the lifetime of localized turbulence in pipe flow

Published online by Cambridge University Press:  22 February 2010

D. J. KUIK*
Affiliation:
Laboratory for Aero & Hydrodynamics, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
C. POELMA
Affiliation:
Laboratory for Aero & Hydrodynamics, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
J. WESTERWEEL
Affiliation:
Laboratory for Aero & Hydrodynamics, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

Transition to turbulence in a pipe is characterized by the increase of the characteristic lifetimes of localized turbulent spots (‘puffs’) with increasing Reynolds number (Re). Previous experiments are based on visualization or indirect measurements of the lifetime probability. Here we report quantitative direct measurements of the lifetimes based on accurate pressure measurements combined with laser Doppler anemometry (LDA). The characteristic lifetime is determined directly from the lifetime probability. It is shown that the characteristic lifetime does not diverge at finite Re, and follows an exponential scaling for the observed range 1725 ≤ Re ≤ 1955. Over this small Re range the lifetime increases over four orders of magnitude. The results show that the puff velocity is not constant, and the rapid disintegration of puffs occurs within 20–70 pipe diameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe-flow. J. Fluid Mech. 289, 83114.CrossRefGoogle Scholar
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91 (22), 224502.CrossRefGoogle ScholarPubMed
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305 (5690), 15941598.CrossRefGoogle ScholarPubMed
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91 (24), 244502.CrossRefGoogle Scholar
Hof, B., Lozar, A., Kuik, D. J. & Westerweel, J. 2008 Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101 (21), 214501.CrossRefGoogle ScholarPubMed
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.CrossRefGoogle ScholarPubMed
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2007 Comment on Willis and Kerswell, PRL 98, 014501 (2007). ArXiv:0707.2642.Google Scholar
Lindgren, E. R. 1969 Propagation velocity of turbulent slugs and streaks in transition pipe flow. Phys. Fluids 12 (2), 418425.CrossRefGoogle Scholar
de Lozar, A. & Hof, B. 2009 An experimental study of the decay of turbulent puffs in pipe flow. Phil. Trans. R. Soc. A 367, 589599.CrossRefGoogle ScholarPubMed
Mullin, T. & Peixinho, J. 2006 Transition to turbulence in pipe flow. J. Low Temp. Phys. 145 (1–4), 7588.CrossRefGoogle Scholar
Nishi, M., Unsal, B., Durst, F. & Biswas, G. 2008 Laminar-to-turbulent transition of pipe flows through puffs and slugs. J. Fluid Mech. 614, 425446.CrossRefGoogle Scholar
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96 (9), 094501.CrossRefGoogle ScholarPubMed
Rotta, J. C. 1956 Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr. Ingenieur Archiv 24, 258281.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2007 a Critical behaviour in the relaminarization of localized turbulence in pipe flow. Phys. Rev. Lett. 98 (1), 014501.CrossRefGoogle ScholarPubMed
Willis, A. P. & Kerswell, R. R. 2007 b Reply to comment on ‘Critical behaviour in the relaminarization of localized turbulence in pipe flow’. ArXiv:0707.2684v1.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states. J. Fluid Mech. 619, 213233.CrossRefGoogle Scholar
Wygnanski, I. J. & Champagne, F. H. 1973 Transition in a pipe. Part 1. Origin of puffs and slugs and flow in a turbulent slug. J. Fluid Mech. 59, 281335.CrossRefGoogle Scholar