Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:50:42.710Z Has data issue: false hasContentIssue false

Quantifying acoustic damping using flame chemiluminescence

Published online by Cambridge University Press:  28 October 2016

E. Boujo*
Affiliation:
CAPS Lab., Mechanical and Process Engineering Dept., ETHZ, 8092 Zürich, Switzerland
A. Denisov
Affiliation:
Combustion Research Lab., Paul Scherrer Institute, 5232 Villigen, Switzerland
B. Schuermans
Affiliation:
GE Power, 5401 Baden, Switzerland
N. Noiray
Affiliation:
CAPS Lab., Mechanical and Process Engineering Dept., ETHZ, 8092 Zürich, Switzerland
*
Email address for correspondence: [email protected]

Abstract

Thermoacoustic instabilities in gas turbines and aeroengine combustors fall within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by postprocessing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altay, H. M., Speth, R. L., Hudgins, D. E. & Ghoniem, A. F. 2009 Flame vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust. Flame 156 (5), 11111125.Google Scholar
Ayoola, B. O., Balachandran, R., Frank, J. H., Mastorakos, E. & Kaminski, C. 2006 Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144 (1–2), 116.Google Scholar
Bade, S., Wagner, M., Hirsch, C., Sattelmayer, T. & Schuermans, B. 2013 Design for thermo-acoustic stability: modeling of burner and flame dynamics. Trans. ASME J. Engng Gas Turbines Power 135 (11), 111502.Google Scholar
Balusamy, S., Li, L. K. B., Han, Z., Juniper, M. P. & Hochgreb, S. 2015 Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. 35 (3), 32293236.Google Scholar
Ćosić, B., Terhaar, S., Moeck, J. P. & Paschereit, C. O. 2015 Response of a swirl-stabilized flame to simultaneous perturbations in equivalence ratio and velocity at high oscillation amplitudes. Combust. Flame 162 (4), 10461062.Google Scholar
Culick, F. E. C. 1976 Nonlinear behavior of acoustic waves in combustion chambers-I. Acta Astron. 3, 715734.Google Scholar
Culick, F. E. C.2006 Unsteady motions in combustion chambers for propulsion systems. RTO AGARDograph AG-AVT-039. RTO/NATO.Google Scholar
Docquier, N. & Candel, S. 2002 Combustion control and sensors: a review. Prog. Energy Combust. Sci. 28 (2), 107150.Google Scholar
Gopalakrishnan, E. A., Tony, J., Sreelekha, E. & Sujith, R. I. 2016 Stochastic bifurcations in a prototypical thermoacoustic system. Phys. Rev. E 94, 022203.Google Scholar
Guyot, D. & Paschereit, C. O. 2009 Optical transfer function measurements for a swirl burner at atmospheric pressure. In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; https://doi.org/10.2514/6.2009-5413.Google Scholar
Higgins, B., McQuay, M. Q., Lacas, F., Rolon, J. C., Darabiha, N. & Candel, S. 2001 Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel 80, 6774.Google Scholar
Keller, J. O. & Saito, K. 1987 Measurements of the combusting flow in a pulse combustor. Combust. Sci. Technol. 53 (2-3), 137163.Google Scholar
Lauer, M., Zellhuber, M., Sattelmayer, T. & Aul, C. J. 2011 Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence. Trans. ASME J. Engng Gas Turbines Power 133 (12), 121501.Google Scholar
Lieuwen, T. 2003 Statistical characteristics of pressure oscillations in a premixed combustor. J. Sound Vib. 260, 317.Google Scholar
Lieuwen, T. 2005 Online combustor stability margin assessment using dynamic pressure data. Trans. ASME J. Engng Gas Turbines Power 127, 478482.Google Scholar
Lieuwen, T. 2012 Unsteady Combustor Physics. Cambridge University Press.Google Scholar
Mejia, D., Miguel-Brebion, M. & Selle, L. 2016 On the experimental determination of growth and damping rates for combustion instabilities. Combust. Flame 169, 287296.CrossRefGoogle Scholar
Najm, H. N., Paul, P. H., Mueller, C. J. & Wyckoff, P. S. 1998 On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame 113 (3), 312332.Google Scholar
Noiray, N. 2016 Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in turbulent combustors. Trans. ASME J. Engng Gas Turbines Power 139 (4), 041503.Google Scholar
Noiray, N. & Denisov, A. 2016 A method to identify thermoacoustic growth rates in combustion chambers from dynamic pressure time series. Proc. Combust. Inst. accepted for publication; doi:10.1016/j.proci.2016.06.092.Google Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Noiray, N. & Schuermans, B. 2013 Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Intl J. Non-Linear Mech. 50, 152163.Google Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2011 Acoustic-convective mode conversion in an aerofoil cascade. J. Fluid Mech. 672, 545569.Google Scholar
Poinsot, T. 2016 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. accepted for publication; https://doi.org/10.1016/j.proci.2016.05.007.Google Scholar
Poinsot, T., Yip, B., Veynante, D., Trouvé, A., Samaniego, J. M. & Candel, S. 1992 Active control: an investigation method for combustion instabilities. J. Phys. III 2 (7), 13311357.Google Scholar
Rajaram, R. & Lieuwen, T. 2009 Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357385.CrossRefGoogle Scholar
Risken, H. 1984 The Fokker–Planck Equation. Springer.Google Scholar
Sattelmayer, T. 2002 Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. Trans. ASME J. Engng Gas Turbines Power 125 (1), 1119.Google Scholar
Schuermans, B.2003 Modeling and control of thermoacoustic instabilities. PhD thesis, EPFL.Google Scholar
Stratonovich, R. L. 1967 Topics in the Theory of Random Noise. Gordon & Breach.Google Scholar
Worth, N. A. & Dawson, J. R. 2013 Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber. Combust. Flame 160 (11), 24762489.Google Scholar
Yi, T. & Gutmark, E. J. 2008 Online prediction of the onset of combustion instability based on the computation of damping ratios. J. Sound Vib. 310 (12), 442447.Google Scholar
Supplementary material: File

Boujo supplementary material

Boujo supplementary material 1

Download Boujo supplementary material(File)
File 50.7 KB