Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T12:26:43.738Z Has data issue: false hasContentIssue false

The onset of chaos in vortex sheet flow

Published online by Cambridge University Press:  25 March 2002

ROBERT KRASNY
Affiliation:
University of Michigan, Ann Arbor, MI 48109-1109, USA
MONIKA NITSCHE
Affiliation:
University of New Mexico, Albuquerque, NM 87131-1141, USA

Abstract

Regularized point-vortex simulations are presented for vortex sheet motion in planar and axisymmetric flow. The sheet forms a vortex pair in the planar case and a vortex ring in the axisymmetric case. Initially the sheet rolls up into a smooth spiral, but irregular small-scale features develop later in time: gaps and folds appear in the spiral core and a thin wake is shed behind the vortex ring. These features are due to the onset of chaos in the vortex sheet flow. Numerical evidence and qualitative theoretical arguments are presented to support this conclusion. Past the initial transient the flow enters a quasi-steady state in which the vortex core undergoes a small-amplitude oscillation about a steady mean. The oscillation is a time-dependent variation in the elliptic deformation of the core vorticity contours; it is nearly time-periodic, but over long times it exhibits period-doubling and transitions between rotation and nutation. A spectral analysis is performed to determine the fundamental oscillation frequency and this is used to construct a Poincaré section of the vortex sheet flow. The resulting section displays the generic features of a chaotic Hamiltonian system, resonance bands and a heteroclinic tangle, and these features are well-correlated with the irregular features in the shape of the vortex sheet. The Poincaré section also has KAM curves bounding regions of integrable dynamics in which the sheet rolls up smoothly. The chaos seen here is induced by a self-sustained oscillation in the vortex core rather than external forcing. Several well-known vortex models are cited to justify and interpret the results.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)