Published online by Cambridge University Press: 15 June 2009
A theoretical model for long vorticity waves propagating on a background shear flow is developed. The basic flow is assumed to be confined between two critical layers, respectively, located near the lower and upper rigid boundaries. In these critical layers even small disturbances will break, and eventually a thin zone of mixed fluid will appear. We derive a nonlinear evolution equation for the amplitude of a wave-like disturbance in this configuration, based on the assumption that the critical layers are replaced by thin recirculation zones attached to the lower and upper rigid boundaries, where the flow is very weak. The dispersive and time-evolution terms in this equation are typical for Korteweg–de Vries theory, but the nonlinear term is more complicated. It comprises nonlinearity associated with the shear across the waveguide, and the nonlinearity due to the flow over the recirculation zones. The coefficient of the quadratic nonlinear term may change sign, depending on the presence or otherwise of recirculation zones at the upper or lower boundary of the waveguide. We then seek steady travelling wave solutions, and show that there are no such steady solutions if the waveguide contains no density stratification. However, steady solutions including solitary waves and bores can exist if the fluid between the critical layers is weakly density stratified.