Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T21:53:21.120Z Has data issue: false hasContentIssue false

On the thermal equilibrium state of large-scale flows

Published online by Cambridge University Press:  13 June 2019

Alexandros Alexakis*
Affiliation:
Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
Marc-Etienne Brachet
Affiliation:
Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

In a forced three-dimensional turbulent flow the scales larger than the forcing scale have been conjectured to reach a thermal equilibrium state forming a $k^{2}$ energy spectrum, where $k$ is the wavenumber. In this work we examine the properties of these large scales in turbulent flows with the use of numerical simulations. We show that the choice of forcing can strongly affect the behaviour of the large scales. A spectrally dense forcing (a forcing that acts on all modes inside a finite-width spherical shell) with long correlation times may lead to strong deviations from the $k^{2}$ energy spectrum, while a spectrally sparse forcing (a forcing that acts only on a few modes) with short correlated time scale can reproduce the thermal spectrum. The origin of these deviations is analysed and the involved mechanisms is unravelled by examining: (i) the number of triadic interactions taking place, (ii) the spectrum of the nonlinear term, (iii) the amplitude of interactions and the fluxes due to different scales and (iv) the transfer function between different shells of wavenumbers. It is shown that the spectrally dense forcing allows for numerous triadic interactions that couple one large-scale mode with two forced modes and this leads to an excess of energy input at the large scales. This excess of energy is then moved back to the small scales by self-interactions of the large-scale modes and by interactions with the turbulent small scales. The overall picture that arises from the present analysis is that the large scales in a turbulent flow resemble a reservoir that is in (non-local) contact with a second out-of-equilibrium reservoir consisting of the smaller (forced, turbulent and dissipative) scales. If the injection of energy at the large scales from the forced modes is relative weak (as is the case for the spectrally sparse forcing) then the large-scale spectrum remains close to a thermal equilibrium and the role of long-range interactions is to set the global energy (temperature) of the equilibrium state. If, on the other hand, the long-range interactions are dominant (as is the case for the spectrally dense forcing), the large-scale self-interactions cannot respond fast enough to bring the system into equilibrium. Then the large scales deviate from the equilibrium state with energy spectrum that may display exponents different from the $k^{2}$ spectrum.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abry, P., Fauve, S., Flandrin, P. & Laroche, C. 1994 Analysis of pressure fluctuations in swirling turbulent flows. J. Phys. II 4 (5), 725733.Google Scholar
Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.Google Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.Google Scholar
Alexakis, A., Mininni, P. D. & Pouquet, A. 2005 Imprint of large-scale flows on turbulence. Phys. Rev. Lett. 95 (26), 264503.Google Scholar
Aluie, H. & Eyink, G. L. 2009 Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter. Phys. Fluids 21 (11), 115108.Google Scholar
Batchelor, G. K. & Proudman, I. 1956 The large-scale structure of homogenous turbulence. Phil. Trans. R. Soc. Lond. A 248 (949), 369405.Google Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.Google Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2013 Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309327.Google Scholar
Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M. 2018a Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3 (3), 034802.Google Scholar
Buzzicotti, M., Di Leoni, P. C. & Biferale, L. 2018b On the inverse energy transfer in rotating turbulence. Eur. Phys. J. E 41 (11), 131.Google Scholar
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295317.Google Scholar
Cameron, A., Alexakis, A. & Brachet, M.-É. 2017 Effect of helicity on the correlation time of large scales in turbulent flows. Phys. Rev. Fluids 2 (11), 114602.Google Scholar
Chasnov, J. R. 1994 Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids 6 (2), 10361051.Google Scholar
Chatfield, C. 2016 The Analysis of Time Series: An Introduction. Chapman and Hall/CRC.Google Scholar
Chen, Q., Chen, S. & Eyink, G. L. 2003 The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15 (2), 361374.Google Scholar
Cichowlas, C., Bonaïti, P., Debbasch, F. & Brachet, M. 2005 Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95 (26), 264502.Google Scholar
Clyne, J., Mininni, P., Norton, A. & Rast, M. 2007 Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9 (8), 301.Google Scholar
Constantin, P. & Majda, A. 1988 The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115, 435456.Google Scholar
Corcos, G. M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18 (3), 353378.Google Scholar
Craya, A.1958 Contributiona l’analyse de la turbulence associéea des vitesses moyennes. pub. Sci. Tech. du Ministere de l’Air (France) (345).Google Scholar
Dallas, V., Fauve, S. & Alexakis, A. 2015 Statistical equilibria of large scales in dissipative hydrodynamic turbulence. Phys. Rev. Lett. 115 (20), 204501.Google Scholar
Davidson, P. 2015 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Domaradzki, J. A. & Carati, D. 2007 An analysis of the energy transfer and the locality of nonlinear interactions in turbulence. Phys. Fluids 19 (8), 085112.Google Scholar
Domaradzki, J. A. & Rogallo, R. S. 1990 Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A 2 (3), 413426.Google Scholar
Eyink, G. L. & Aluie, H. 2009 Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21 (11), 115107.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids A 4 (7), 14921509.Google Scholar
Herring, J. R. 1974 Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17 (5), 859872.Google Scholar
Ishida, T., Davidson, P. A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.Google Scholar
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59 (4), 745752.Google Scholar
Krogstad, P.-Å. & Davidson, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.Google Scholar
Krstulovic, G., Mininni, P. D., Brachet, M. E. & Pouquet, A. 2009 Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows. Phys. Rev. E 79 (5), 056304.Google Scholar
Lee, T. D. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Maths 10 (1), 6974.Google Scholar
Lesieur, M.1972 Décomposition d’un champ de vitesse non divergent en ondes d’hélicité. Tech. Rep. Observatoire de Nice.Google Scholar
Lesieur, M. & Schertzer, D. 1978 Self similar decay of high Reynolds-number turbulence. J. Méc. 17 (4), 609646.Google Scholar
Loitsianskii, L. G.1939 Some basic laws of isotropic turbulent flow. Tech. Rep. Trudy Tsentr. Aero.-Giedrodin Inst. 440, 3–23.Google Scholar
Meldi, M. & Sagaut, P. 2012 On non-self-similar regimes in homogeneous isotropic turbulence decay. J. Fluid Mech. 711, 364393.Google Scholar
Michel, G., Pétrélis, F. & Fauve, S. 2017 Observation of thermal equilibrium in capillary wave turbulence. Phys. Rev. Lett. 118 (14), 144502.Google Scholar
Mininni, P. D., Alexakis, A. & Pouquet, A. 2006 Large-scale flow effects, energy transfer, and self-similarity on turbulence. Phys. Rev. E 74 (1), 016303.Google Scholar
Mininni, P. D., Alexakis, A. & Pouquet, A. 2008 Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws. Phys. Rev. E 77 (3), 036306.Google Scholar
Mininni, P. D., Rosenberg, D., Reddy, R. & Pouquet, A. 2011 A hybrid MPI–OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 37 (6–7), 316326.Google Scholar
Moffatt, H. K. 2014 Note on the triad interactions of homogeneous turbulence. J. Fluid Mech. 741, R3.Google Scholar
Orszag, S. A. 1977 Statistical theory of turbulence. In Les Houches 1973: Fluid Dynamics (ed. Balian, R. & Peube, J. L.), Gordon and Breach.Google Scholar
van Oudheusden, B. W. 2013 PIV-based pressure measurement. Meas. Sci. Technol. 24 (3), 032001.Google Scholar
Pouquet, A., Rosenberg, D., Stawarz, J. E. & Marino, R. 2019 Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review. Earth Space Sci. 6, 351369.Google Scholar
Rathmann, N. M. & Ditlevsen, P. D. 2017 Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence. Phys. Rev. Fluids 2 (5), 054607.Google Scholar
Ristorcelli, J. R. 2003 The self-preserving decay of isotropic turbulence: analytic solutions for energy and dissipation. Phys. Fluids 15 (10), 32483250.Google Scholar
Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27 (3), 581593.Google Scholar
Sahoo, G., Alexakis, A. & Biferale, L. 2017 Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Phys. Rev. Lett. 118 (16), 164501.Google Scholar
Sahoo, G. & Biferale, L. 2018 Energy cascade and intermittency in helically decomposed Navier–Stokes equations. Fluid Dyn. Res. 50 (1), 011420.Google Scholar
Speziale, C. G. & Bernard, P. S. 1992 The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645667.Google Scholar
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.Google Scholar
Valente, P. C. & Vassilicos, J. C. 2012 Dependence of decaying homogeneous isotropic turbulence on inflow conditions. Phys. Lett. A 376 (4), 510514.Google Scholar
Verma, M. K., Ayyer, A., Debliquy, O., Kumar, S. & Chandra, A. V. 2005 Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence. Pramana 65 (2), 297.Google Scholar
Verma, M. K. & Donzis, D. 2007 Energy transfer and bottleneck effect in turbulence. J. Phys. A 40 (16), 4401.Google Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.Google Scholar
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.Google Scholar
Willmarth, W. W. & Wooldridge, C. E. 1962 Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech. 14 (2), 187210.Google Scholar
Yoshimatsu, K. & Kaneda, Y. 2018 Large-scale structure of velocity and passive scalar fields in freely decaying homogeneous anisotropic turbulence. Phys. Rev. Fluids 3 (10), 104601.Google Scholar
Yoshimatsu, K. & Kaneda, Y. 2019 No return to reflection symmetry in freely decaying homogeneous turbulence. Phys. Rev. Fluids 4, 024611.Google Scholar