Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-20T06:43:07.089Z Has data issue: false hasContentIssue false

On the spatial length scales of scalar dissipation in turbulent jet flames

Published online by Cambridge University Press:  17 January 2008

P. VAISHNAVI
Affiliation:
Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK
A. KRONENBURG*
Affiliation:
Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK
C. PANTANO
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Author to whom correspondence shoud be addressed: [email protected]

Abstract

Spatial length scales of the rate of dissipation, χ, of fluctuations of a conserved scalar, Z, are inferred numerically using a DNS database of a turbulent planar jet flame. The Taylor-scale Reynolds numbers lie in the range of 38 to 58 along the centreline of the simulated jet flame. Three different methods are used to study the spatial length scales associated with χ. First, analysis of the one-dimensional dissipation spectra shows an expected Reδ−3/4 (Kolmogorov) scaling with the outer-scale Reynolds number, Reδ. Secondly, thin sheet-like three-dimensional scalar dissipation structures have been investigated directly. Such structures were identified within the computational domain using level-sets of the χ-field, and their thicknesses were subsequently computed. The study shows, in accordance with experimental studies, that the captured dissipation-layer thickness also shows a Kolmogorov scaling with Reδ. Finally, spatial filters of varying widths were applied to the instantaneous Z field in order to model the averaging effect that takes place with some experimental measurement techniques. The filtered scalar dissipation rate was then calculated from the filtered scalar field. The peaks in the instantaneous filtered χ-profiles are observed to decrease exponentially with increasing filter width, yielding estimates of the true value of χ. Unlike the dissipation length scales obtained from the spectral analysis and the level-set method, the length-scale estimates from the spatial-filtering method are found to be proportional to Reδ−1. This is consistent with the small-scale intermittency of χ which cannot be captured by techniques that just resolve the conventional Batchelor/Obukhov–Corrsin scale. These results have implications when considering resolution requirements for measuring scalar dissipation length scales in experimental flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, R. S. & Karpetis, A. N. 2005 a Measurements of scalar variance, scalar dissipation, and length scales in turbulent piloted methane/air jet flames. Flow Turb. Combust. 72, 427448.CrossRefGoogle Scholar
Barlow, R. S. & Karpetis, A. N. 2005 b Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames. Proc. Combust. Inst. 30, 673680.CrossRefGoogle Scholar
Batchelor, G. K. 1959 Small scale variation of convected quantities like temperature in a turbulent fluid. J. Fluid Mech. 5, 113133.CrossRefGoogle Scholar
Batchelor, G. K. & Townsend, A. A. 1949 The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238255.Google Scholar
Bilger, R. W. 1980 Turbulent flows with nonpremixed reactants. In Topics in Applied Physics: Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.), pp. 65111. Springer.CrossRefGoogle Scholar
Bilger, R. W. 2004 Some aspects of scalar dissipation. Flow Turb. Combust. 72, 93114.CrossRefGoogle Scholar
Bilger, R. W., Stårner, S. H. & Kee, R. J. 1990 On reduced mechanisms for methane air combustion in nonpremixed flames. Combust. Flame 80 (2), 135149.CrossRefGoogle Scholar
Boersma, B. J. 1999 Direct numerical simulation of a turbulent reacting jet. In Annu. Res. Briefs CTR, pp. 5972. Stanford University.Google Scholar
Brethouwer, G. & Nieuwstadt, F. T. M. 2001 DNS of mixing and reaction of two species in a turbulent channel flow: a validation of the conditional moment closure. Flow Turb. Combust. 66, 209239.CrossRefGoogle Scholar
Buch, K. A. & Dahm, W. J. A. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. J. Fluid Mech. 317, 2171.Google Scholar
Buch, K. A. & Dahm, W. J. A. 1998 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. J. Fluid Mech. 364, 129.CrossRefGoogle Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. Appl. Phys. 22, 469473.Google Scholar
Dahm, W. J. A. & Southerland, K. B. 1997 Experimental assessment of Taylor's hypothesis and its applicability to dissipation estimates in turbulent flows. Phys. Fluids 9 (7), 21012107.CrossRefGoogle Scholar
Dahm, W. J. A. & Southerland, K. B. 1999 Quantitative flow visualization via fully-resolved four-dimensional spatio-temporal imaging. In Flow Visualization: Techniques and Examples (ed. Smits, A. & Lim, T. T.), pp. 231258. Imperial College Press, London.Google Scholar
Dahm, W. J. A., Southerland, K. B. & Buch, K. A. 1991 Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows. Phys. Fluids A 3 (5), 11151127.CrossRefGoogle Scholar
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.CrossRefGoogle Scholar
Frisch, U. 1991 From global scaling, a la Kolmogorov, to local multifractal scaling in fully developed turbulence. Proc. R. Soc. Lond. A 434, 8999.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U. & Vergassola, M. 1991 A prediction of the multifractal model: the intermediate dissipation range. Europhys. Lett. 14, 439444.CrossRefGoogle Scholar
Gibson, C. H. 1991 Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy. Proc. R. Soc. Lond. A 434, 149164.Google Scholar
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 Turbulent spectra from a tidal channel. J. Fluid Mech. 12, 241268.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In C. R. Dokl. Akad. Sci. URSS, 30, 301305.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
Kushnir, D., Galun, M. & Brandt, A. 2006 a Fast multi-scale clustering and manifold identification. Pattern Recog. 39, 18761891.CrossRefGoogle Scholar
Kushnir, D., Schumacher, J. & Brandt, A. 2006 b Geometry of intensive scalar dissipation events in turbulence. Phys. Rev. Lett. 97 (124502), 14.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.Google Scholar
Mathieu, J. & Scott, J. 2000 An Introduction to Turbulent Flow. Cambridge University Press.CrossRefGoogle Scholar
Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.CrossRefGoogle Scholar
Mizobuchi, Y., Shinjo, J., Ogawa, S. & Takeno, T. 2005 A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30, 611619.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics; Mechanics of Turbulence, 1st edn. MIT Press.Google Scholar
Nelkin, M. 1994 Universality and scaling in fully developed turbulence. Adv. Phys. 43, 143181.Google Scholar
Noullez, A., Wallace, G., Lempert, W., Miles, R. B. & Frisch, U. 1997 Transverse velocity increments in turbulent flow using the RELIEF technique. J. Fluid Mech. 339, 287307.CrossRefGoogle Scholar
Oboukhov, A. M. 1949 Struktura temperaturnovo polia v turbulentnom potoke. Izv. Akad. Nauk SSSR Geofiz. 3, 59.Google Scholar
Pantano, C. 2004 Direct simulation of non-premixed flame extinction in a methane–air jet with reduced chemistry. J. Fluid Mech. 514, 231270.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.Google Scholar
Pitts, W. M., Richards, C. D. & Levenson, M. S. 1999 Large- and scall-scale structures and their interactions in an axisymmetric jet. Tech. Rep. 6393. NIST.CrossRefGoogle Scholar
Pope, S. 2000 Turbulent Flows, pp. 222237. Cambridge University Press.CrossRefGoogle Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds numbers. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. 2005 Very fine structures in scalar mixing. J. Fluid Mech. 531, 113122.Google Scholar
She, Z.-S. 1991 Physical model of intermittency in turbulence: near-dissipation-range non-Gaussian statistics. Phys. Rev. Lett. 66, 600603.CrossRefGoogle ScholarPubMed
She, Z.-S., Jackson, E. & Orszag, S. A. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344, 226228.CrossRefGoogle Scholar
She, Z.-S., Chen, S., Doolen, G., Kraichnan, R. H. & Orszag, S. A. 1993 Reynolds number dependence of isotropic Navier–Stokes turbulence. Phys. Rev. Lett. 70, 32513254.CrossRefGoogle ScholarPubMed
Sreenivasan, K. R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23, 539600.Google Scholar
Sreenivasan, K. R. 2004 Possible effects of small-scale intermittency in turbulent reacting flows. Flow Turb. Combust. 72, 115131.Google Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
Sreenivasan, K. R. & Meneveau, C. 1988 Singularities of the equations of fluid motion. Phys. Rev. A 38, 62876295.Google Scholar
Sreenivasan, K. R. & Stolovitzky, G. 1996 Statistical dependence of inertial range properties on large scales in high-Reynolds-number shear flow. Phys. Rev. Lett. 77, 22182221.Google Scholar
Su, L. K. 1998 Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets. In Annu. Res. Briefs CTR, pp. 3546. Stanford University.Google Scholar
Su, L. K. & Clemens, N. T. 2003 The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J. Fluid Mech. 488, 129.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1974 A First Course in Turbulence. MIT Press.Google Scholar
Tsurikov, M. S. & Clemens, N. T. 2002 The structure of dissipative scales in axisymmetric turbulent gas-phase jets. AIAA J. 0164, 116.Google Scholar
Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 2960.Google Scholar
Wang, G.-H., Barlow, R. S. & Clemens, N. T. 2007 a Quantification of resolution and noise effects on thermal dissipation measurements in turbulent non-premixed jet flames. Proc. Combust. Inst. 31, 15251532.Google Scholar
Wang, G.-H., Karpetis, A. N. & Barlow, R. S. 2007 b Dissipation length scales in turbulent nonpremixed jet flames. Combust. Flame 148, 6275.CrossRefGoogle Scholar
Wang, L. & Peters, N. 2006 The length-scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457475.CrossRefGoogle Scholar
Wang, L.-P., Chen, S. & Brasseur, J. G. 1999 Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 2. Passive scalar field. J. Fluid Mech. 400, 163197.CrossRefGoogle Scholar
Williams, F. A. 1985 Combustion Theory, 2nd edn. Addison–Wesley.Google Scholar
Yakhot, V. 2003 Pressure–velocity correlations and scaling exponents in turbulence. J. Fluid Mech. 495, 135143.CrossRefGoogle Scholar
Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121, 823841.CrossRefGoogle Scholar
Yeung, P. K., Xu, S., Donzis, D. A. & Sreenivasan, K. R. 2004 Simulations of three-dimensional turbulent mixing for Schmidt numbers of the order 1000. Flow Turb. Combust. 72, 333347.CrossRefGoogle Scholar
Yeung, P. K., Donzis, D. A. & Sreenivasan, K. R. 2005 High-Reynolds-number simulation of turbulent mixing. Phys. Fluids 17, 081703.CrossRefGoogle Scholar