Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:41:25.701Z Has data issue: false hasContentIssue false

On the skewness of the temperature derivative in turbulent flows

Published online by Cambridge University Press:  19 April 2006

K. R. Sreenivasan
Affiliation:
Department of Engineering and Applied Science, Yale University, New Haven, CT 06520
S. Tavoularis
Affiliation:
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, MD 21218 Present address: Department of Mechanical Engineering, University of Ottawa, Ontario, Canada 1N 6NS.

Abstract

This note provides some explanation of the fact that, contrary to the requirements of local isotropy, the skewness S of the streamwise temperature derivative ∂θ/∂x1 has been observed to be a non-zero constant of magnitude of about unity in high-Reynolds-number and high-Péclet-number turbulent shear flows. Measurements in slightly heated homogeneous shear flows and in unsheared grid turbulence suggest that S is non-zero only when the mean shear dU1/dx2 and the mean temperature gradient dT/dx2 are both non-zero. The sign of S is given by –sgn (dU1/dx2).sgn (dT/dx2). For fixed dU1/dx2, S is of the form tanh (αdT/dx2), α being a constant, while for fixed dT/dx2, it is of the form S/S* = 1 − β1 exp (− β2τ), where S* is a characteristic value of S, β1 and β2 are positive constants, and τ can be interpreted as a ‘total strain’. The derivative skewness data in other (inhomogeneous) shear flows are also compatible with the latter relation. Predictions from a simplified transport equation for $\overline{(\partial\theta/\partial x_1)^3}$, derived in the light of the present experimental observations, are in reasonable agreement with the measured values of S. A possible physical mechanism maintaining S is discussed.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Prabhu, A. & Stephenson, S. E. 1975 J. Fluid Mech. 72, 455.
Antonia, R. A., Chambers, A. J., Van Atta, C. W., Friehe, C. A. & Helland, K. N. 1978 Phys. Fluids 21, 509.
Batchelor, G. K. & Proudman, I. 1954 Quart. J. Mech. Appl. Math. 7, 83.
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 J. Fluid Mech. 41, 81.
Corrsin, S. 1952 J. Appl. Phys. 23, 113.
Freymuth, P. & Uberoi, M. S. 1971 Phys. Fluids 14, 2574.
Freymuth, P. & Uberoi, M. S. 1972 Phys. Fluids 16, 161.
Gibson, C. H., Friehe, C. A. & Mcconnell, S. O. 1977 Phys. Fluids Suppl. 20, S156.
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Harris, V. G., Graham, J. A. H. & Corrsin, S. 1977 J. Fluid Mech. 81, 657.
Højstrup, J., Rasmussen, K. & Larsen, S. E. 1976 DISA Information 20, 22.
Kolmogorov, A. N. 1941 C.R. Acad. Sci. U.S.S.R. 30, 301.
Larue, J. C., Deaton, T. & Gibson, C. H. 1975 Rev. Sci. Instrum. 46, 757.
Mestayer, P. G., Gibson, C. H., Coantic, M. F. & Patel, A. S. 1976 Phys. Fluids 19, 1279.
Oboukhov, A. M. 1949 Izv. Akad. Nauk. S.S.S.R. Ser. Geograph. i. Geofiz. 13, 58.
Rose, W. G. 1966 J. Fluid Mech. 25, 97.
Rose, W. G. 1970 J. Fluid Mech. 44, 767.
Ribner, H. S. & Tucker, M. 1953 N.A.C.A. Tech. Rep. no. 1113.
Sreenivasan, K. R. 1979 Prog. Rep. to N.A.C.A.
Sreenivasan, K. R. & Antonia, R. A. 1977 Phys. Fluids 20, 1986.
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1238.
Sreenivasan, K. R., Antonia, R. A. & Britz, D. 1979 J. Fluid Mech. 94, 745.
Sreenivasan, K. R., Tavoularis, S., Henry, R. & Corrsin, S. 1980 J. Fluid Mech. 100, 597.
Tavoularis, S. 1978a J. Phys. E, Sci. Instrum. 11, 21.
Tavoularis, S. 1978b Ph.D. thesis, Johns Hopkins University.
Tavoularis, S. & Corrsin, S. 1981a,b J. Fluid Mech. (to appear).
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Wyngaard, J. C. 1971 J. Fluid Mech. 48, 763.
Wyngaard, J. C. 1976 The maintenance of temperature derivative skewness in large-Reynolds-number turbulence. Unpublished manuscript.