Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T21:23:39.868Z Has data issue: false hasContentIssue false

On the mechanism of blocking in a stratified fluid

Published online by Cambridge University Press:  29 March 2006

D. D. Freund
Affiliation:
University of Wisconsin Present address: Fluid Mechanics Research Institute, University of Essex.
R. E. Meyer
Affiliation:
University of Wisconsin

Abstract

The steady, two-dimensional motion which can occur when a body moves horizontally at large Richardson number is examined. Theoretical evidence is presented for two propositions: (i) The nature of the motion depends on whether the vertical thickness of the body is large compared with an intrinsic length scale of the motion. (ii) If the body is sufficiently thick, then diffusion or heat conduction are important, even if the Schmidt or Prandtl number is large. The notion of ‘near-similar’ solutions (§4) is used to obtain a description of the motion past a thick body which is likely to approximate the real motion everywhere except fairly close to the body surface (§5). It predicts a very long wake, at the core of which is a blocking column, both fore and aft of the body (§5). The same prediction is implied for the two-dimensional Taylor column in a rotating system (§6).

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apostol, T. M. 1957 Mathematical Analysis. Addison-Wesley.
Bernstein, F. 1919 Math. Ann. 79, 265.
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.
Bracewell, R. 1965 The Fourier Transform and its Applications. McGraw-Hill.
Bretherton, F. P. 1967 J. Fluid Mech. 28, 545.
Chang, J. D. 1961 J. Math. Mech. 10, 811.
Graebel, W. P. 1969 Quart. J. Mech. Appl. Math. 22, 39.
Janowitz, G. S. 1971 J. Fluid Mech. 47, 171.
Long, R. R. 1959 J. Geophys. Res. 64, 2151.
Long, R. R. 1962 J. Hyd. Div. A.S.C.E. 88, 9.
Martin, S. & Long, R. R. 1968 J. Fluid Mech. 31, 669.
Maxworthy, T. 1970 J. Fluid Mech. 40, 453.
Meyer, R. E. 1967 J. Math. Phys. 8, 1676.
Moore, D. W. & Saffman, P. G. 1969 Trans. Roy. Soc. A, 264, 597.
Pao, Y. H. 1968 J. Fluid Mech. 34, 795.
Prandtl, L. 1952 Essentials of Fluid Mechanics. London: Blackie.
Scorer, R. S. 1950 Quart. J. Mech. Appl. Math. 3, 107.
Serrin, J. 1967 Proc. Roy. Soc. A, 299, 491.
Taylor, G. I. 1922 Proc. Roy. Soc. A, 102, 180.
Veronis, G. 1970 Ann. Rev. Fluid Mech. 2, 37.
Watson, G. N. 1966 Theory of Bessel Functions. Cambridge University Press.
Yih, C. S. 1959 J. Geophys. Res. 64, 12.
Yih, C. S. 1965 Dynamics of Nonhomogeneous Fluids. Macmillan.