Published online by Cambridge University Press: 02 December 2005
The motion of a spherical inclusion released in a vertical solid-body rotation flow is investigated theoretically and experimentally. Solid spheres and bubbles are considered. The particle Reynolds number, the Taylor number, the Weber number and the capillary number are smaller than unity. The motion equations of the inclusion are obtained by revisiting the hydrodynamic equations. The axial (vertical) motion and the horizontal motion are uncoupled, even though they are sensitive to the rotation rate of the flow. Analytical solutions of the particle motion equation are compared to experimental results obtained by releasing a particle in a rotating tank filled with silicone oil. For solid spheres and bubbles, both the terminal velocity and the particle ejection rate (or trapping rate) predicted by the theory agree with experiments, without any empirical adjustment. In particular, the experimental device enables us to check the validity of various theories involving solid or gaseous inclusions with or without inertia or history effects. It is observed that the mobility tensor obtained by writing the fluid motion equations in the rotating frame accurately predicts the horizontal particle trajectory, like the Boussinesq-Basset equation obtained by writing the fluid motion equations in the non-rotating frame and neglecting the horizontal contribution of inertia effects.