Published online by Cambridge University Press: 21 April 2006
The radiation resistance (damping coefficient) and virtual mass for a circular disk that executes small, heaving oscillations at the surface of a semi-infinite body of water, originally calculated by MacCamy (1961a) through the numerical solution of an integral equation, are calculated from a systematic hierarchy of variational approximations. The first member of this hierarchy is based on the exact solution of the boundary-value problem for α = 0 and is in error by less than 2% for 0 [les ] α [les ] 1, where α = aσ2/g (a = radius of disk, σ = angular frequency, g = gravity). The second approximation provides a variational interpolation between the limiting results for α = 0 and α = ∞ and appears to be in error by less than 2% for all α except in certain narrow intervals, where pseudoresonances pose difficulties. Those difficulties are overcome by local reference to the third approximation. Numerical results are plotted for 0 [les ] α [les ] 10. Asymptotic results for α ↑ ∞ are developed in an Appendix.
The corresponding formulation and the first variational approximation are developed for pitching oscillations of the disk.