Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T18:15:55.356Z Has data issue: false hasContentIssue false

A numerical study on the oscillatory dynamics of tip vortex cavitation

Published online by Cambridge University Press:  25 October 2024

Saman Lak*
Affiliation:
Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Rajeev Jaiman
Affiliation:
Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
*
Email address for correspondence: [email protected]

Abstract

In this paper, we numerically study the mechanism of the oscillatory flow dynamics associated with the tip vortex cavitation (TVC) over an elliptical hydrofoil section. Using our recently developed three-dimensional variational multiphase flow solver, we investigate the TVC phenomenon at Reynolds number $Re = 8.95 \times 10^5$ via dynamic subgrid-scale modelling and the homogeneous mixture theory. To begin, we examine the grid resolution requirements and introduce a length scale considering both the tip vortex strength and the core radius. This length scale is then employed to non-dimensionalize the spatial resolution in the tip vortex region, the results of which serve as a basis for estimation of the required mesh resolution in large eddy simulations of TVC. We next perform simulations to analyse the dynamical modes of tip vortex cavity oscillation at different cavitation numbers, and compare them with the semi-analytical solution. The breathing mode of cavity surface oscillation is extracted from the spatial-temporal evolution of the cavity's effective radius. The temporally averaged effective radius demonstrates that the columnar cavity experiences a growth region followed by decay as it progresses away from the tip. Further examination of the characteristics of local breathing mode oscillations in the growth and decay regions indicates the alteration of the cavity's oscillatory behaviour as it travels from the growth region to the decay region, with the oscillations within the growth region being characterized by lower frequencies. For representative cavitation numbers $\sigma \in [1.2,2.6]$, we find that pressure fluctuations exhibit a shift of the spectrum towards lower frequencies as the cavitation number decreases, similar to its influence on breathing mode oscillations. The results indicate the existence of correlations between the breathing mode oscillations and the pressure fluctuations. While the low-frequency pressure fluctuations are found to be correlated with the growth region, the breathing mode oscillations within the decay region are related to higher-frequency pressure fluctuations. The proposed mechanism can play an important role in developing mitigation strategies for TVC, which can reduce the underwater radiated noise by marine propellers.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, N.N., Proctor, F.H. & Perry, R.B. 2013 Numerical simulation of the aircraft wake vortex flowfield. In AIAA Paper 2013-2552.CrossRefGoogle Scholar
Amini, A., Reclari, M., Sano, T., Dreyer, M. & Farhat, M. 2019 On the physical mechanism of tip vortex cavitation hysteresis. Exp. Fluids 60, 118.CrossRefGoogle Scholar
Arndt, R.E.A. 2002 Cavitation in vortical flows. Annu. Rev. Fluid Mech. 34 (1), 143175.CrossRefGoogle Scholar
Arndt, R.E.A. & Keller, A.P. 1992 Water quality effects on cavitation inception in a trailing vortex. Trans. ASME J. Fluids Engng 114 (3), 430438.CrossRefGoogle Scholar
Asnaghi, A., Bensow, R. & Svennberg, U. 2017 Comparative analysis of tip vortex flow using RANS and LES. In VII International Conference on Computational Methods in Marine Engineering (ed. M. Visonneau, P. Queutey & D. Le Touzé). CIMNE.Google Scholar
Asnaghi, A., Svennberg, U. & Bensow, R.E. 2020 Large eddy simulations of cavitating tip vortex flows. Ocean Engng 195, 106703.CrossRefGoogle Scholar
Astolfi, J.-A., Fruman, D.H. & Billard, J.-Y. 1999 A model for tip vortex roll-up in the near field region of three-dimensional foils and the prediction of cavitation onset. Eur. J. Mech. (B/Fluids) 18 (4), 757775.CrossRefGoogle Scholar
Balaras, E., Benocci, C. & Piomelli, U. 1996 Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34 (6), 11111119.CrossRefGoogle Scholar
Batchelor, G.K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20 (4), 645658.CrossRefGoogle Scholar
Bosschers, J. 2018 a An analytical and semi-empirical model for the viscous flow around a vortex cavity. Intl J. Multiphase Flow 105, 122133.CrossRefGoogle Scholar
Bosschers, J. 2018 b Propeller tip-vortex cavitation and its broadband noise. PhD thesis, University of Twente, The Netherlands.Google Scholar
Cazzoli, G., Falfari, S., Bianchi, G.M., Forte, C. & Catellani, C. 2016 Assessment of the cavitation models implemented in OpenFOAM$\circledR$ under DI-like conditions. Energy Proc. 101, 638645.CrossRefGoogle Scholar
Cheng, H., Long, X., Ji, B., Peng, X. & Farhat, M. 2021 A new Euler–Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas. Intl J. Multiphase Flow 134, 103441.CrossRefGoogle Scholar
Devenport, W.J., Rife, M.C., Liapis, S.I. & Follin, G.J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.CrossRefGoogle Scholar
Duarte, C.M., et al. 2021 The soundscape of the anthropocene ocean. Science 371 (6529), eaba4658.CrossRefGoogle ScholarPubMed
Fruman, D. & Dugue, C. 1992 Tip vortex roll-up and cavitation. In Proceedings of the 19th Symposium on Naval Hydrodynamics, Seoul, Korea, pp. 633–651. National Academy Press.Google Scholar
Ganesh, H., Schot, J. & Ceccio, S.L. 2014 Stationary cavitation bubbles forming on a delta wing vortex. Phys. Fluids 26 (12), 127102.CrossRefGoogle Scholar
Gatski, T.B. & Speziale, C.G. 1993 On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 5978.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Ghahramani, E., Arabnejad, M.H. & Bensow, R.E. 2019 A comparative study between numerical methods in simulation of cavitating bubbles. Intl J. Multiphase Flow 111, 339359.CrossRefGoogle Scholar
Jaiman, R.K., Guan, M.Z. & Miyanawala, T.P. 2016 Partitioned iterative and dynamic subgrid-scale methods for freely vibrating square-section structures at subcritical Reynolds number. Comput. Fluids 133, 6889.CrossRefGoogle Scholar
Kashyap, S.R. & Jaiman, R.K. 2021 A robust and accurate finite element framework for cavitating flows with moving fluid–structure interfaces. Comput. Maths Applics. 103, 1939.CrossRefGoogle Scholar
Klapwijk, M., Lloyd, T., Vaz, G., van den Boogaard, M. & van Terwisga, T. 2022 Exciting a cavitating tip vortex with synthetic inflow turbulence: a CFD analysis of vortex kinematics, dynamics and sound generation. Ocean Engng 254, 111246.CrossRefGoogle Scholar
Lilly, D.K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4 (3), 633635.CrossRefGoogle Scholar
Maines, B.H. & Arndt, R.E.A. 1997 Tip vortex formation and cavitation. Trans. ASME J. Fluids Engng 119 (2), 413419.CrossRefGoogle Scholar
Morozov, V.P. 1974 Theoretical analysis of the acoustic emission from cavitating line vortices. Sov. Phys. Acoust. 9 (5), 468471.Google Scholar
Pennings, P.C., Bosschers, J., Westerweel, J. & van Terwisga, T.J.C. 2015 a Dynamics of isolated vortex cavitation. J. Fluid Mech. 778, 288313.CrossRefGoogle Scholar
Pennings, P., Westerweel, J. & Terwisga, T. 2015 b Flow field measurement around vortex cavitation. Exp. Fluids 56, 206.CrossRefGoogle Scholar
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34 (1), 349374.CrossRefGoogle Scholar
Platzer, G.P. & Souders, W.G. 1979 Tip vortex cavitation delay with application to marine lifting surfaces – a literature survey. Tech. Rep. 79/051. Naval Ship Research and Development Center.CrossRefGoogle Scholar
Schnerr, G.H. & Sauer, J. 2001 Physical and numerical modeling of unsteady cavitation dynamics. In Fourth International Conference on Multiphase Flow, ICMF New Orleans, LO, USA (ed. E.E. Michaelides), vol. 1. Elsevier.Google Scholar
Smith, T.A. & Rigby, J. 2022 Underwater radiated noise from marine vessels: a review of noise reduction methods and technology. Ocean Engng 266, 112863.CrossRefGoogle Scholar
Thomson, W.L.K. 1880 Vibrations of a columnar vortex. Phil. Mag. 10 (61), 155–168.CrossRefGoogle Scholar
Wang, B.-C. & Bergstrom, D.J. 2005 A dynamic nonlinear subgrid-scale stress model. Phys. Fluids 17 (3), 035109.CrossRefGoogle Scholar
Wang, X., Bai, X., Cheng, H., Ji, B. & Peng, X. 2023 Numerical investigation of cavitating tip vortex dynamics and how they influence the acoustic characteristics. Phys. Fluids 35 (6), 062119.Google Scholar
Wang, X., Bai, X., Qian, Z., Cheng, H. & Ji, B. 2022 Modal analysis of tip vortex cavitation with an insight on how vortex roll-up enhances its instability. Intl J. Multiphase Flow 157, 104254.CrossRefGoogle Scholar
Ye, Q., Wang, Y. & Shao, X. 2023 Dynamics of cavitating tip vortex. J. Fluid Mech. 967, A30.CrossRefGoogle Scholar
Zhang, L.-X., Zhang, N., Peng, X.-X., Wang, B.-L. & Shao, X.-M. 2015 A review of studies of mechanism and prediction of tip vortex cavitation inception. J. Hydrodyn. 27 (4), 488495.CrossRefGoogle Scholar