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In this paper, we numerically study the mechanism of the oscillatory flow dynamics
associated with the tip vortex cavitation (TVC) over an elliptical hydrofoil section.
Using our recently developed three-dimensional variational multiphase flow solver, we
investigate the TVC phenomenon at Reynolds number Re = 8.95 × 105 via dynamic
subgrid-scale modelling and the homogeneous mixture theory. To begin, we examine the
grid resolution requirements and introduce a length scale considering both the tip vortex
strength and the core radius. This length scale is then employed to non-dimensionalize
the spatial resolution in the tip vortex region, the results of which serve as a basis for
estimation of the required mesh resolution in large eddy simulations of TVC. We next
perform simulations to analyse the dynamical modes of tip vortex cavity oscillation
at different cavitation numbers, and compare them with the semi-analytical solution.
The breathing mode of cavity surface oscillation is extracted from the spatial-temporal
evolution of the cavity’s effective radius. The temporally averaged effective radius
demonstrates that the columnar cavity experiences a growth region followed by decay
as it progresses away from the tip. Further examination of the characteristics of local
breathing mode oscillations in the growth and decay regions indicates the alteration of the
cavity’s oscillatory behaviour as it travels from the growth region to the decay region, with
the oscillations within the growth region being characterized by lower frequencies. For
representative cavitation numbers σ ∈ [1.2, 2.6], we find that pressure fluctuations exhibit
a shift of the spectrum towards lower frequencies as the cavitation number decreases,
similar to its influence on breathing mode oscillations. The results indicate the existence of
correlations between the breathing mode oscillations and the pressure fluctuations. While
the low-frequency pressure fluctuations are found to be correlated with the growth region,
the breathing mode oscillations within the decay region are related to higher-frequency
pressure fluctuations. The proposed mechanism can play an important role in developing
mitigation strategies for TVC, which can reduce the underwater radiated noise by marine
propellers.

† Email address for correspondence: slak@mail.ubc.ca

© The Author(s), 2024. Published by Cambridge University Press 998 A13-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

75
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:slak@mail.ubc.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.758&domain=pdf
https://doi.org/10.1017/jfm.2024.758


S. Lak and R. Jaiman

Key words: hydrodynamic noise, cavitation, multiphase flow

1. Introduction

Noise pollution due to human activity (i.e. anthropogenic noise) poses serious threats to
the marine ecosystem (Duarte et al. 2021). One of the main sources of anthrophony is
shipping, which generates noise through the operation of propellers, hull vibrations and
onboard machinery (Smith & Rigby 2022). A significant proportion of the propeller noise
is due to the cavitation phenomenon occurring in various forms, such as sheet and tip
vortex cavitation (TVC). In most cases, tip vortex cavitation is the first form of cavitation
appearing on ship propellers (Zhang et al. 2015), which arises due to the low pressure
within the vortex trailing from the tip of the propeller blades.

The tip vortex forms on lifting surfaces of finite length due to the pressure difference
between the pressure side and the suction side, which disappears at the tip. The pressure
gradient on the pressure and suction sides leads to opposite spanwise velocity components
on these surfaces, which generates a vortex that trails from the tip (Platzer & Souders
1979). The wake sheet shed from the blade rolls up into the tip vortex as the flow moves
downstream, further strengthening the tip vortex (Batchelor 1964). The pressure within
the vortex core may drop below the vapour pressure, leading to a cavitating tip vortex. Tip
vortex cavitation encompasses a complex dynamical interaction among vortical motion,
cavitation and turbulence (Arndt 2002). This complex phenomenon can be observed in
a relatively simple hydrofoil section that produces a strong swirling flow with pressure
reduction and the cavitation process. This paper is motivated by the need to provide an
improved understanding of the interplay of cavitation and vortex dynamics.

Understanding the physics of TVC – including the tip vortex roll-up and formation,
TVC inception, tip vortex cavity dynamics, and the contribution of TVC to the
underwater radiated noise (URN) level in various operating conditions – is crucial for
the development of effective TVC mitigation strategies. To study the tip vortex flow
field, one needs to consider numerous aspects of multiscale spatial-temporal dynamics,
even in non-cavitating (wetted) conditions. During the formation of the tip vortex, the tip
vortex/boundary layer interactions strongly affect the tip vortex flow field (Maines & Arndt
1997). Downstream of the tip, the influence of the roll-up of the wake in the tip vortex and
the complex system of streamwise vortices shed from the tip become dynamically relevant
(Devenport et al. 1996). Further downstream, viscous decay and the introduction of vortex
instabilities play an important role in the breakdown of the tip vortex (Ganesh, Schot &
Ceccio 2014).

The occurrence of cavitation further complicates the phenomenon of the tip vortex.
These complexities coupled with the high three-dimensionality and anisotropy of the flow
with extreme gradients (Asnaghi, Svennberg & Bensow 2020), the impact of turbulent
fluctuations on the cavitation inception (Arndt & Keller 1992), and tip vortex wandering,
which gives rise to the need for special treatments when analysing the acquired data
(Devenport et al. 1996), make the investigation of tip vortex cavitating flows a complex
endeavour. Despite all of these difficulties associated with the investigation of cavitating
tip vortex flow, various researchers have studied the TVC phenomenon using theoretical,
experimental and numerical methods focusing on the contributions of TVC to URN.

Recently, there has been a growing interest in studying the contributions of TVC to
URN. Specifically, a significant focus has been placed on investigating the oscillations
of the interface between the liquid phase and the vapour filament forming within
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(a)

(b)
(c)

Figure 1. Three main tip vortex cavity oscillation modes: (a) breathing, (b) displacement and
(c) double-helical.

the tip vortex, referred to as the cavity surface in the rest of this paper. Different
modes of oscillation, namely, the breathing mode, serpentine (displacement) mode and
double-helical mode, are observed on the tip vortex cavity interface. These modes of
cavity oscillations are depicted in figure 1. The cavity oscillations have been found to
affect the radiated noise (Bosschers 2018b; Wang et al. 2023). An analytical solution was
derived by Thomson (1880) for the dispersion relation of excitations on a hollow columnar
vortex representing a vortex cavity. For the purpose of acoustic analysis, Morozov (1974)
extended this solution to compressible flows. Bosschers (2018b) further improved the
solution by including viscous effects and constant axial velocity. Experimental evidence
for this analytical solution was further explored by Pennings et al. (2015a) for the tip vortex
cavitating flow over a stationary NACA66(2)-415 hydrofoil with an elliptical planform.
Furthermore, different modes of TVC were observed to induce a range of instabilities in
the tip vortex, thus altering its dynamics (Ye, Wang & Shao 2023). Of particular interest in
our study is to investigate the development of cavity surface oscillatory behaviour as the tip
vortex cavity travels downstream, to gain insight into the oscillation dynamics of different
regions of the cavity and their contribution to pressure fluctuations in the surroundings.

Due to the limitations of experimental methods in cavitating flow investigations,
numerical studies can reveal more details about the flow and cavity characteristics in TVC
analysis. However, obtaining sufficiently accurate results has been a recent development
because of the challenges associated with simulating tip vortex cavitating flows. Large
eddy simulation (LES) was shown to outperform Reynolds-averaged Navier–Stokes
models for simulation of the tip vortex flow field by Asnaghi, Bensow & Svennberg (2017),
and Asnaghi et al. (2020) successfully replicated the flow field of the tip vortex in wetted
conditions observed in the experiments of Pennings, Westerweel & Terwisga (2015b) using
implicit LES. In cavitating conditions, modelled based on homogeneous mixture theory,
their results regarding the azimuthal velocity distribution and the diameter of the cavitating
tip vortex also agreed with the experimental data. They also proposed mesh resolution
requirements for accurate simulation of tip vortex cavitating flows in terms of the number
of nodes across the vortex core. To account for the effect of non-condensable gas bubbles
on TVC, Cheng et al. (2021) developed an Euler–Lagrangian cavitation model in which
the gas bubbles’ motion was simulated through a Lagrangian approach, and their impact
on cavitation was taken into account by modifying the cavitation model employed in the
Eulerian-based simulation of the cavitating flow based on the local partial pressure of the
non-condensable gas.

To the best of the authors’ knowledge, the first numerical study focusing on tip vortex
cavity surface oscillation was carried out by Klapwijk et al. (2022) using partially averaged
Navier–Stokes and delayed detached eddy simulation. Their results included some of
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the cavity surface oscillations, but the breathing mode oscillations were not captured.
Furthermore, it is evident from their results of the cavity morphology that the tip vortex
cavity was over-dissipative and could not capture a major proportion of the surface
oscillations. The double-helical mode of cavity surface oscillations was captured in the
simulations of Wang et al. (2022). They investigated the effect of roll-up of secondary
vortices into the tip vortex flow, which was shown to be responsible for the enhancement of
tip vortex instability. Recently, the cavity surface oscillations of the breathing mode were
successfully captured in the numerical study by Wang et al. (2023). The dominance of the
hydroacoustic contribution of the breathing mode was also demonstrated in their work,
with the tonal frequency and the centre frequency of the broadband hump observed in the
noise spectrum being attributed to the breathing mode at zero streamwise wavenumber
and the tip vortex cavity resonance. However, their study includes the results for only one
cavitation number. Moreover, they considered only the developed region of the tip vortex
cavity and not the formation region, i.e. where the wake roll-up into the tip vortex is not
complete. In addition, their method for extracting the breathing mode oscillations from
the cavity surface oscillation data requires improvement due to the centre of the cavity not
being well defined in tip vortex cavitating flows.

In this study, using LES and the homogeneous mixture model, which has been
shown to be able to predict the surface oscillations of the tip vortex cavity in previous
studies (Klapwijk et al. 2022; Wang et al. 2022, 2023), the tip vortex cavitating flow
over a NACA66(2)-415 stationary hydrofoil is investigated numerically via our in-house
three-dimensional (3-D) variational finite element solver. In order to address the lack of a
general estimation method for mesh resolution requirements in TVC simulation, a length
scale is defined based on the radial pressure gradient within the vortex core, which takes
into account the strength of the tip vortex as well as its core radius. This length scale is then
employed to non-dimensionalize the mesh resolution in the tip vortex region to propose a
generalizable method for the estimation of the required mesh resolution in the simulation
of tip vortex flow in various configurations, rather than merely considering the number
of grid nodes across the vortex core radius. After the assessment of the numerical results
with the experimental and analytical data, a comprehensive investigation of the breathing
mode of cavity surface oscillations is carried out for representative cavitation numbers.
To extract the breathing mode oscillations, we define an effective radius based on the
cross-sectional area of the tip vortex cavity that captures the cavity volume variations.
Different regions as the tip vortex cavity progresses away from the tip are examined
using the temporally averaged effective radius. The spatially averaged effective radius is
analysed to discern the temporal variations of the vapour volume of the entire tip vortex
cavity. The spatial-temporal characteristics of local breathing mode oscillations are further
investigated to understand the characteristics of this oscillatory mode and its development
along the cavity in different cavitation numbers. Proper orthogonal decomposition (POD)
is employed to further examine the streamwise variations of the characteristics of the
breathing mode. The pressure fluctuations are probed at different locations within the
domain to investigate how the contributions of TVC to the pressure fluctuations vary as
a function of cavitation numbers. To understand the correlations between the breathing
oscillations and the pressure fluctuations, the spectra of the pressure fluctuations are
compared to the breathing mode oscillation spectra within different regions of the tip
vortex cavity. These findings may serve as a foundation for the development of mitigation
strategies aimed at addressing tip vortex cavitation noise.

The remainder of the paper is structured as follows. In § 2, the computational framework
employed in this work is described. The problem setting and the grid generation strategy
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are presented in § 3. The results obtained from the simulations are covered in § 4. While the
focus in § 4.1 is placed on the non-cavitating conditions, § 4.2 provides an overview of the
oscillation dynamics of the tip vortex cavity. A systematic investigation of the breathing
mode of oscillation is presented in § 4.3. The pressure fluctuations in different cavitation
numbers and their correlation with breathing mode oscillations are discussed in § 4.4. The
key findings and concluding remarks are summarized in § 5.

2. Computational framework

In this work, our in-house high-fidelity finite element flow solver was employed for
simulating the tip vortex cavitating flow. The mathematical modelling and numerical
formulation are briefly presented here. For further details, the reader is referred to the
original papers on the implementation of the models used herein (Jaiman, Guan &
Miyanawala 2016; Kashyap & Jaiman 2021).

2.1. Multiphase flow modelling
In this work, multiphase flow is treated as a continuous homogeneous mixture of liquid
and vapour phases. A phase indicator φ f (x, t) determines the phase fraction of the liquid
phase at any coordinate and time in the physical domain of the working fluid Ω f (x, t),
where x and t are the spatial and temporal coordinates within the domain Ω f (x, t) with
the boundary Γ f . The mixture density (ρ f ) and the mixture dynamic viscosity (μ f ) are
considered to be linear combinations of the density and viscosity of the liquid and vapour
phases, and are calculated as

ρ f = ρlφ
f + ρv(1 − φ f ), (2.1)

μ f = μlφ
f + μv(1 − φ f ), (2.2)

where the properties with l and v subscripts represent the properties of the pure liquid and
pure vapour phases, respectively. In order to obtain the value of the phase indicator φ f

within the domain, a scalar transport equation is solved, which is given by

∂φ f

∂t
+ φ f ∇ · u + u · ∇φ f = ṁ

ρl
on (x, t) ∈ Ω f , (2.3)

where u is the fluid velocity at each coordinate (x, t), and ṁ is the finite mass transfer rate
from the vapour phase to the liquid phase occurring due to cavitation.

2.2. Cavitation modelling
In (2.3), the source term ṁ representing the mass transfer rate from the vapour phase
to the liquid phase, which includes the effects of both condensation and evaporation, is
calculated using the model proposed by Schnerr & Sauer (2001):

ṁ = 3ρlρv

ρ f RB

√
2

3ρl |p f − pv|
[
Ccφ

f (1 − φ f ) max( p f − pv, 0)

+ Cvφ
f (1 + φnuc − φ f ) min( p f − pv, 0)

]
, (2.4)

where p f (x, t) is the working fluid pressure, and pv is the saturation pressure of the
working fluid. Also, Cc and Cv are the condensation and evaporation coefficients,
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which were added to the model in later numerical implementations (Cazzoli et al.
2016; Ghahramani, Arabnejad & Bensow 2019) in order to modify the condensation and
evaporation behaviour with respect to specific configurations.

In this model, the initial nuclei within the flow are assumed to be of equal radius and
homogeneously distributed within the domain. In (2.4), φnuc is the initial phase fraction of
the bubble nuclei, which is related to the initial volume of the nuclei per unit volume as

φnuc = vnuc

1 + vnuc
, (2.5)

where vnuc is the initial volume of the nuclei per unit volume, which is related to the
nuclei diameter (dnuc) and the number of nuclei per unit volume (n0) as vnuc = πn0d3

nuc/6.
In (2.4), RB is the equivalent radius of the vapour volume assumed to be in the form of one
bubble, and is related to other parameters of the flow using the equation

RB =
(

3
4πn0

1 + φnuc − φ f

φf

)1/3

. (2.6)

In the framework employed in this work, the effect of diffusion of dissolved air from
the liquid phase into the tip vortex cavity is assumed to be negligible. It was found
by Amini et al. (2019) that the diffusion of air into the tip vortex cavity, which causes
hysteresis in the inception and desinence of TVC, is dependent mainly on the formation
of a laminar separation bubble at the tip. Their results demonstrated that such a laminar
separation bubble acts as a shelter for the tip vortex cavity and promotes the diffusion of
air into the tip vortex cavity. They eliminated hysteresis caused by air diffusion into the
tip vortex cavity through artificial roughening of the blade surface, which indicates that in
the absence of the laminar separation bubble at the tip, the impact of diffusion of air into
the tip vortex cavity is negligible. Since, as explained in § 3, the hydrofoil employed in
the current work is a NACA 6 series with low adverse pressure gradients over its surface
(Asnaghi et al. 2020), no laminar separation bubble occurs at the tip of this hydrofoil, thus
making it plausible to assume that the diffusion of dissolved air into the tip vortex cavity
is negligible.

2.3. Fluid conservation of mass and momentum
The spatially filtered Navier–Stokes equations for an incompressible flow are

ρ f ∂ū
∂t

+ ρ f ū · ∇ū = ∇ · σ̄ f + ∇ · σ sgs + b f on (x, t) ∈ Ω f , (2.7)

∇ · ū = 0 on Ω f , (2.8)

where the overbar denotes the spatially filtered quantity, b f denotes the body force
exerted on the fluid, and the Cauchy and subgrid stresses are represented by σ̄ f and σ sgs,
respectively. The Cauchy stress for a Newtonian fluid can be written as

σ̄ f = −p̄I + μ f (∇ū + (∇ū)T) , (2.9)

where p̄ represents the filtered fluid pressure. The subgrid stress σ sgs is the additional
stress term appearing in (2.7) due to the filtering applied in LES. In order to complete the
set of equations, a model is required for the subgrid stress tensor.
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2.4. Subgrid-scale modelling
Dynamic subgrid-scale (SGS) model is utilized in this work for modelling the SGS
stress σ sgs. In this model, a filter, denoted by an overbar, is applied to the Navier–Stokes
equations (2.7) and (2.8), which, as explained in § 2.3, gives rise to a new stress term, the

SGS stress σ
sgs
ij = u f

i u f
j − ū f

i ū f
j , appearing in the momentum equation. This stress term

corresponds to the stresses originating from the scales of motion smaller than the spatial
resolution Δ. As mentioned in § 2.3, since the SGS quantities are unknown, a model for
the SGS stress is required for the closure of the problem.

The nonlinear SGS stress (Gatski & Speziale 1993; Wang & Bergstrom 2005) is
obtained using the equation

σ
sgs
ij − δij

3
σ

sgs
kk ≈ −2μtS̄ij − CNL6μ2

t /σ
sgs
kk

×
(

S̄ikΩ̄kj + S̄jkΩ̄ki − 2S̄ikS̄kj + 2
3

S̄nkS̄knδij

)
, (2.10)

where μt is the dynamic eddy viscosity, and

S̄ij ≡ 1
2

⎛⎝∂ ū f
i

∂xj
+

∂ ū f
j

∂xi

⎞⎠ and Ω̄ij ≡ 1
2

⎛⎝∂ ū f
i

∂xj
−

∂ ū f
j

∂xi

⎞⎠ (2.11a,b)

are the resolved strain rate and rate of rotation, respectively. The eddy viscosity μt in this
equation is related to the mesh resolution and the resolved strain tensor as

μt = ρ f (CsΔ̄)2 |S̄|, (2.12)

where |S̄| is the norm of the resolved strain rate tensor, calculated as |S̄| = (2S̄ijS̄ij)
1/2.

In order for LES to yield reasonable results close to the wall, a simple algebraic eddy
viscosity model (Balaras, Benocci & Piomelli 1996; Piomelli & Balaras 2002) is employed
instead of (2.12) close to the wall as μt/μ

f = κy+
w (1 − e−y+

w /A), where y+
w = ywuτ /ν is

the non-dimensional distance to the wall in wall units, with the friction velocity and the
model coefficient being denoted by uτ and κ , respectively, and A having constant value 19.

In the dynamic SGS model (Germano et al. 1991), a test filter is defined in addition to
the grid filter. The grid filter, denoted by an overbar, has scale dimension Δ, and the test
filter, denoted by the operation (̂ ), is any coarser-level filter with scale dimension Δ̂. The
SGS stress at the test level T ij = ûiuj − ˆ̄ui ˆ̄uj is obtained by test-filtering the equations of
motion. The stress tensor Lij, which is the stress associated with the length scales between
the test filter size and the grid filter size,

Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj, (2.13)

can be related to T ij and σ
sgs
ij as

Lij = T ij − σ
sgs
ij . (2.14)

Using the Smagorinsky eddy-viscosity model for the unknown stresses σ
sgs
ij and T ij yields

Lij = −2C2
s

(
Δ̂2 | ˆ̄S| ˆ̄Sij − Δ2 |S̄| S̄ij

)
, (2.15)
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and the Smagorinsky constant is related to a dynamic coefficient Cds as Cs = √
Cds for

Cds > 0, and Cs = 0 otherwise. The dynamic coefficient Cds (Lilly 1992) is calculated as

Cds = 1
2

〈M ijLij〉
〈M lkM lk〉 , (2.16)

where M ij = Δ̂2 | ˆ̄S| ˆ̄Sij − Δ̄2 ̂|S̄|S̄ij, and 〈·〉 denotes some type of smoothing process such
as averaging.

3. Problem set-up

In this work, the cavitating flow over a stationary NACA66(2)-415 hydrofoil with an
elliptical planform is considered. The geometry of the problem and the working conditions
are presented in § 3.1, and the strategy employed for grid generation is explained in
§ 3.2, where the derivation of a pressure-gradient-based length scale is presented and is
employed for non-dimensionalization of the mesh size within the tip vortex flow region
for mesh requirements specification.

3.1. Geometry and working conditions
The case investigated numerically in this study involves the flow over a stationary
NACA66(2)-415 hydrofoil, which is placed within a tunnel with a square cross-section.
The geometry and dimensions of the domain and the hydrofoil, depicted in figure 2, are
chosen to be identical to those of the experiments by Pennings et al. (2015b) since their
experimental data are considered herein for the validation of our numerical framework.
Due to the manufacturing constraints encountered in the experimental study (Pennings
et al. 2015b), the foil employed in this investigation is truncated at the trailing edge. The
root chord length of the foil after truncation is c0 = 0.1256 m, and the half-span of the
foil is h = 0.150m. As shown in figure 2, the inflow and outflow boundaries are located
5c0 and 10c0 in front of and behind the hydrofoil, respectively. The tip of the foil is placed
at the centre of the test section at a distance 0.150 m from the lateral walls. The origin of
the coordinate system is considered at the tip in the simulations, and x, y and z directions
correspond to the streamwise, transverse and spanwise directions, respectively, as shown
in figure 2.

The inflow velocity and the Reynolds number are kept constant at U∞ = 6.8 ms−1 and
Re = U∞c0/ν = 8.95 × 105, respectively, in all cases, similar to the experiments. The
simulations are carried out at angle of attack α = 9◦. We consider both non-cavitating
(wetted) and cavitating conditions for our physical investigation. The cavitation number
(σ ) is defined based on the outflow pressure as

σ = p∞ − psat

1
2
ρU2∞

, (3.1)

where psat and p∞ are the saturation and the outflow pressure, respectively. To explore the
oscillatory dynamics of the cavity surface, we consider three cavitation numbers, σ = 1.2,
1.7 and 2.6. The primary emphasis is on the case with cavitation number σ = 1.7 due
to the occurrence of moderate cavitation in this scenario. The inflow velocity is set to
uin = (U∞, 0, 0). The outflow boundary condition is weakly (Neumann) set as constant
pressure. The bottom wall of the domain and the hydrofoil surface are specified as no-slip
walls, and other domain walls are of symmetry (slip wall) boundary condition.
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Figure 2. Schematic of the computational domain and boundary conditions.

To achieve statistically stationary conditions in a shorter computation time, the initial
condition was obtained from simulations with a coarser grid and a larger time step, and
the results were projected onto the desired grid. Using this initial condition, in the first
step, the simulations were carried out for 11 tref , i.e. the flow characteristic time scale
c0/U∞, with time step �t = 5.41 × 10−3 tref in wetted conditions. Subsequently, the time
step was decreased to �t = 5.41 × 10−4 tref , which was found to be small enough for
accurate results. Cavitation was started after 16 tref of flow time, and cavitating flow
simulations were carried out for 38 tref . The results obtained for the last 22 tref of the flow
time were used in this work for post-processing and analysis. Due to the computation time
limitations, the cases σ = 2.6 and 1.2 were simulated for 30 tref and 22 tref , respectively,
following the onset of cavitation. For both of these cases, the last 11 tref of the flow time
were employed for the analysis.

3.2. Grid generation strategy
It is well known that due to the high gradients and small scales in tip vortex cavitating
flows, adequate mesh resolution in simulating such flows is of critical significance due
to the high susceptibility of such flows to numerical diffusion (Asnaghi et al. 2020).
Therefore, an adequately fine mesh is required within the tip vortex flow region. Due to the
various resolution requirements in different regions of cavitating tip vortex flow, the grid
needs to be meticulously designed to satisfy mesh requirements while avoiding excessive
computational costs.

The cross-sectional views of the grid distribution employed in this work in the
streamwise and transverse directions are illustrated in figure 3. Triangular mesh elements
are generated on the hydrofoil surface and extruded normal to the hydrofoil surface,
generating prism layers as the boundary layer mesh. Outside the boundary layer mesh,
tetrahedral elements are utilized. A refinement region is created enclosing the hydrofoil
and the region where flow dynamics is present. A refinement box is added in the wake
region to capture the effects of wake dynamics on the tip vortex roll-up process. A
cylindrical refinement region with radius r = 30 mm is created, starting from a streamwise
position slightly upstream of the tip and extending 2c0 downstream of the tip. A smaller
refinement region along the path of the tip vortex is created enclosing the tip vortex core to
capture the extreme gradients in the tip vortex flow. This region is created by sweeping the
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(a) (b)

Figure 3. Grid distribution in the streamwise and cross-flow directions: (a) streamwise distribution,
(b) in-plane distribution.

tip vortex trajectory with a circle of radius r = 5 mm, which is obtained by preliminary
simulations with a coarse cylindrical refinement.

The mesh resolution within the tip vortex region is one of the major factors
determining the modelling accuracy of TVC. Many researchers have proposed various
mesh requirements for simulating TVC (Ahmad, Proctor & Perry 2013; Asnaghi et al.
2020). All of these recommendations are based on the number of grid points across the
tip vortex diameter; however, merely considering the number of grid points across the tip
vortex diameter does not take into account all the influencing parameters, and would not
necessarily lead to sufficient resolution. Other characteristics of the tip vortex flow, such
as the circulation (Γ ), should also be taken into account. There might exist tip vortex
flows with the same vortex core diameters but different strengths, and the vortex flow with
higher strength, indeed, requires finer mesh resolution. Furthermore, the vortex core radius
might not be known prior to the simulations, which gives rise to the need for a method to
estimate the mesh resolution requirements for tip vortex flow simulation based on a priori
known parameters. Therefore, a dimensionless mesh resolution within the tip vortex flow
region (�r∗) is defined herein to account for the effect of the tip vortex strength as well as
its core radius.

In the simulation of tip vortex cavitating flows, capturing the radial gradient of pressure
∂p/∂r is of utmost importance. Therefore, the maximum radial pressure gradient together
with the fluid density ρ and kinematic viscosity ν is used to define a length scale for the
tip vortex flow as

LΓ =

⎛⎜⎜⎝ ρν2(
∂p
∂r

)
max

⎞⎟⎟⎠
1/3

. (3.2)

Since the maximum gradient of pressure is not known before the simulations and
experiments, it needs to be related to a priori known properties of the flow, such as the
Reynolds number and the lift coefficient (CL), which is known from the experimental
data or can be obtained easily using low-cost numerical analyses when experimental
data are not available. To relate the maximum radial gradient of pressure to the known
parameters of the flow, the tip vortex flow field is assumed to be axisymmetric, and the
radial velocity is assumed to be zero. In this case, the radial momentum equation simplifies
to ∂p/∂r = ρ(u2

θ /r), where r is the radial distance from the vortex centre, and uθ is the
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azimuthal velocity of the flow. The Rankine vortex model with circulation Γ and core
radius rv is employed to obtain the azimuthal velocity. The Rankine vortex model assumes
a solid-body-like rotation within an inner core (r < rv), thereby having a radial velocity
distribution uθ (r) = Γ r/2πr2

v . The vortex flow outside the rigid core is assumed to be an
irrotational vortex, i.e. uθ (r) = Γ/2πr.

The maximum radial pressure gradient in a Rankine vortex occurs on the vortex core
boundary, i.e. r = rv , where the azimuthal velocity in the Rankine vortex model is uθ =
Γ/2πrv , the substitution of which in the simplified radial momentum equation yields(

∂p
∂r

)
max

= ρΓ 2

4π2r3
v

(3.3)

for the maximum radial pressure gradient. Using the maximum radial pressure gradient
obtained from (3.3) in (3.2), and rearranging based on the vortex Reynolds number (ReΓ =
Γ/ν), yields

LΓ = (2π)2/3rv Re−2/3
Γ . (3.4)

Based on (3.4), the length scale LΓ scales linearly with the vortex core radius rv , and
scales inversely with Re2/3

Γ , indicating that as the vortex core radius decreases or the vortex
strength (represented by the vortex Reynolds number ReΓ ) increases, the length scale LΓ

decreases, thus indicating the need for a finer mesh to be employed in the tip vortex region.
The circulation of the tip vortex Γ and the tip vortex core radius rv are unknown

before the numerical analysis or experiments. Therefore, these quantities also need to be
estimated for the calculation of the length scale LΓ . Fruman & Dugue (1992) assumed
that the local tip vortex circulation and vortex core radius are related to the wing mid-span
circulation Γ0 and the boundary layer thickness δ, respectively. The mid-span circulation
of the hydrofoil Γ0 is calculated using the Kutta–Jukowski theorem as Γ0 = 1

2 CLU∞c0.
Astolfi, Fruman & Billard (1999) stated that the radius of the vortex core is directly related
to the thickness of the turbulent boundary layer (δ) of a flat plate with length one blade
root chord length c0, which can be related to the Reynolds number using the equation
δ = 0.37c0 Re−0.2. Pennings et al. (2015a) obtained the proportionality coefficients Γ/Γ0
and rv/δ to be in the ranges 0.44 < Γ/Γ0 < 0.49 and 0.56 < rv/δ < 0.61. In the
calculations of Astolfi et al. (1999), these values were in the ranges 0.5 < Γ/Γ0 < 0.6
and 0.8 < rv/δ < 1.0. Since the goal is to find an estimate for the required mesh size
within the tip vortex core, the turbulent boundary layer thickness and the mid-span wing
circulation can be substituted for the tip vortex core radius and the tip vortex circulation
in (3.4), respectively. Therefore, the coefficients can be omitted as they merely affect the
scaling of the results. The pressure-gradient-based length scale LΓ is described in terms
of the a priori known flow parameters as

LΓ =
(

16π2

C2
L Re2.6

)1/3

c0. (3.5)

The length scale LΓ is employed to non-dimensionalize the mesh element size within the
tip vortex region �r as �r∗ = �r/LΓ . In this work, simulations are carried out using
different values for the non-dimensional mesh resolution �r∗ within the tip vortex region,
and the mesh requirements are proposed accordingly in terms of the non-dimensional mesh
resolution. The mesh resolutions within the tip vortex flow region and their corresponding
non-dimensional values are summarized in table 1, the results of which are presented in
§ 4.1.
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Case Mesh size �r∗ Number of nodes

I 0.250 mm 46 10.3 million
II 0.125 mm 23 13.5 million
III 0.100 mm 18.5 16.9 million

Table 1. Simulation cases for the mesh resolution effect study.

4. Results and discussion

In this section, the numerical results obtained using our finite element solver are presented.
In § 4.1, our findings from non-cavitating tip vortex flow simulations are compared with
the experimental data (Pennings et al. 2015b), and the effect of mesh resolution on the
accuracy of the simulations is investigated systematically. The tip vortex cavitating flow
simulation results are examined in § 4.2, and evaluated with the semi-analytical solution
by Bosschers (2018b) as well as the experimental measurements of Pennings et al. (2015b).
The breathing mode of oscillation is further explored for different cavitation numbers in
§ 4.3, and the pressure fluctuations within the domain are analysed in § 4.4 to determine
the correlations between the breathing mode oscillations of the tip vortex cavity and the
pressure fluctuations within the domain.

4.1. Non-cavitating flow
To study the effect of mesh resolution on the wetted tip vortex flow simulation, and to
validate the capability of the presented numerical framework in simulating such flows, the
axial (x direction) and in-plane (parallel with the yz-plane) velocity distribution at three
different downstream locations (x/c0 = 0.5, 0.75, 1.14) are compared qualitatively with
the experimental data, and quantitative comparison is carried out for the time-averaged lift
coefficient and the in-plane velocity distribution at the downstream location x/c0 = 1.14.
Due to a direct relationship between the lift coefficient and the tip vortex flow field, both
the lift coefficient and the velocity profiles require accurate predictions for the modelling
of tip vortex cavitating flow. The simulations obtain a time-averaged lift coefficient
CL = 0.68, which is in agreement with the value reported in Pennings et al. (2015b),
i.e. CL ≈ 0.66 ± 0.02.

The velocity data obtained from the simulations should be processed before comparing
with the experimental data. First, the centre of the vortex is identified at every time step
assuming that the minimum pressure within the vortex core occurs at the centre of the
vortex. In the next step, the results obtained from 3-D simulations are projected onto a
two-dimensional (2-D) cross-section of the flow orthogonal to the streamwise direction
(parallel with the yz-plane). The mesh projected onto the 2-D plane is illustrated in
figure 4(a). In the next step, a new polar coordinate system is defined with the vortex
core centre as the origin, and the data are interpolated from the 2-D plane of interest
onto the polar mesh, depicted in figure 4(b), around the tip vortex core centre using the
cubic spline interpolation method. This process is carried out for different flow times,
then the quantities obtained for various flow times on the vortex-based polar coordinate
system are averaged after aligning the tip vortex centre obtained for all flow times used
in the averaging. Utilizing this method of post-processing eliminates the effect of vortex
wandering on time averaging. For the quantitative comparison of azimuthal velocity at
the downstream location x/c0 = 1.14 with the experimental measurements, the in-plane
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z

(a) (b)

r

θ

y

Figure 4. Projected 2-D triangular mesh and polar mesh used during the data processing for comparison
with the experimental data. (a) Triangular mesh on a 2-D plane orthogonal to the free-stream flow direction
obtained from interpolation from the 3-D mesh. (b) Polar grid points generated around the tip vortex centre for
interpolation of the data from the 2-D cross-section of the flow.

velocity values are spatially averaged on 90◦ arcs between the two perpendicular black
lines illustrated in 5(b), the same as in the averaging method used in Pennings et al. (2015b)
since the asymmetry of the tip vortex flow field at this location necessitates the utilization
of the same averaging method for consistency.

As a quantitative comparison, the time- and contour-averaged azimuthal velocity
profiles predicted by the simulations employing various mesh sizes within the tip
vortex region at the cross-section x/c0 = 1.14 are shown in figure 6. Pennings et al.
(2015b) employed two averaging methods to obtain the azimuthal velocity profile, namely
sum-of-correlation (SOC) and conditional averaging, the latter of which is more similar
to the method of averaging utilized in the present study. Their results obtained using
both methods are plotted in figure 6. This plot shows that accurate capturing of the
velocity field inside the tip vortex requires extremely high mesh resolution. The use
of inadequate resolution can lead to excessive dissipation and underprediction of the
maximum azimuthal velocity and its gradient. Moreover, employing adequately small grid
elements within the tip vortex region is necessary for the correct prediction of the tip
vortex core radius. The results presented in figure 6 indicate that the results obtained from
the simulation with �r∗ = 46 are excessively dissipated compared to the experimental
data. Refinement of the grid to �r∗ = 23 led to the correct overall capture of the velocity
distribution, but the tip vortex flow field, in this case, is slightly dissipated. The utilization
of a grid with �r∗ = 18.5 provides an accurate prediction of the tip vortex flow field.

Based on the qualitative and quantitative comparisons of the predicted axial and
azimuthal velocity fields presented herein, it can be concluded that the non-dimensional
grid size �r∗ is required to be below 20 for a reliable capture of tip vortex flow dynamics.
This guideline can serve as a more generalizable method for estimating the required
mesh resolution based on a priori known parameters for future works on tip vortex flow
simulation compared to previously proposed mesh resolution requirements. Furthermore,
the agreement between the results obtained from the simulation using a non-dimensional
mesh resolution �r∗ = 18.5 in the tip vortex region reveals the capability of the developed
finite-element-based numerical framework in simulating non-cavitating tip vortex flows.
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Figure 5. Comparison of non-dimensional velocity distribution within the tip vortex region at the downstream
location x/c0 = 1.14 obtained from simulations with different mesh sizes with the experimental measurements.
(a) Non-dimensional axial velocity. (b) Non-dimensional in-plane velocity.
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Figure 6. Comparison of the normalized azimuthal velocity profile at x/c0 = 1.14 obtained from simulations
using various grid sizes with experimental data.
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Figure 7. Tip vortex cavity surface observed in simulations (viewed from the pressure side of the hydrofoil)
at cavitation number σ = 1.7 with (a) �r∗ = 46, (b) �r∗ = 23, and (c) �r∗ = 18.5.

4.2. Simulation of TVC oscillatory dynamics
Similar to the experimental observations (Pennings et al. 2015a), the tip vortex cavity
observed in the simulations carried out in this work exhibits complex surface oscillations,
as shown in figure 7. As explained in § 1, these surface oscillations have been found to
be one of the sources of TVC noise. Therefore, correctly capturing these oscillations in
the simulations, and then investigating the physics of these oscillations and deformations,
especially the breathing mode of oscillation, is crucial for understanding the contributions
of the TVC to the URN. In this subsection, the effect of mesh resolution on cavity surface
oscillations observed in the simulations is discussed in § 4.2.1, which is followed by an
overview of the oscillations of the tip vortex cavity surface for the case σ = 1.7 obtained
from the simulation with �r∗ = 18.5.

4.2.1. Effect of mesh resolution on TVC oscillatory dynamics
The impact of mesh resolution on the cavity surface oscillations is investigated via
instantaneous tip vortex cavity shapes for various mesh resolutions. The tip vortex cavities
depicted in figure 7 are extracted from the simulation results using the iso-surface of
α = 0.9, where α is the volume fraction of liquid water. As is evident in this figure,
the tip vortex cavity obtained from simulations using the coarsest mesh resolution in this
study, i.e. �r∗ = 46, does not exhibit physically consistent surface oscillations and lacks
the double-helical mode specifically. Although the breathing and displacement modes are
present in this case, they occur at excessively small amplitudes.

As the mesh resolution is refined to �r∗ = 23, surface deformations of the cavity
captured in the simulations are intensified, manifesting a more realistic behaviour than
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Figure 8. Time-averaged cavitating tip vortex flow field at σ = 1.7. (a) Time-averaged tip vortex cavity
obtained from simulations with �r∗ = 18.5. (b) Iso-surfaces of (ω · ∇)u(U2∞/c2

0) = 200 (red) and −200 (blue)
in time-averaged flow field.

the case with �r∗ = 46. Figure 7(b) demonstrates that the tip vortex cavity obtained using
mesh resolution �r∗ = 23 possesses the stationary double-helical shape in the roll-up
region of the tip vortex similar to the stationary double-helical mode of deformation in
the time-averaged tip vortex cavity structure obtained from simulations using �r∗ = 18.5
displayed in figure 8(a). Furthermore, various modes of travelling surface oscillations are
observed on the tip vortex cavity obtained from the simulation with �r∗ = 23 along the
cavity.

Figure 7(c) demonstrates that, similar to the case with resolution �r∗ = 23, various
modes of cavity surface oscillations are present along the entire length of the cavity in
simulations when mesh resolution �r∗ = 18.5 is employed. This comparison indicates
that the coarsest mesh is unable to capture the cavity surface oscillations, and these
oscillations are present in the results of both cases with �r∗ = 23 and 18.5. These results
demonstrate that in addition to the necessity of an adequately fine mesh for accurate
simulation of the non-cavitating tip vortex flow, such mesh resolutions are crucial for the
simulations to capture the cavity surface oscillations of tip vortex.

4.2.2. Overview of tip vortex cavity surface oscillations
The cavity surface oscillations are examined by employing a method similar to what
is commonly used in experimental studies (Pennings et al. 2015a) to extract various
modes of cavity surface oscillations, which uses the diameter of the cavity viewed from
different sides to distinguish between different modes of oscillation. Furthermore, the
results obtained using this method are compared with the analytical solution discussed
in Bosschers (2018b).

In order to extract various modes of the cavity surface oscillations, illustrated in figure 1,
from the complex cavity surface similar to the tip vortex cavity illustrated in figure 7,
the tip vortex cavity diameter observed from the top and side views is employed in the
experimental study of Pennings et al. (2015a). This method can be utilized in numerical
studies to attain an overview of the oscillations captured in the simulations, which can be
used as a basis for more complex post-processing of the results. The non-dimensional tip
vortex cavity radius observed from the side (xz view) and top (xy view) of the domain is
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Figure 9. Spatial-temporal variation of the non-dimensional radius observed at σ = 1.7 from (a) side view at
the xz-plane, and (b) top view at the xy-plane.

presented in figure 9, which clearly indicates the presence of cavity surface oscillations
in the results of the simulations. The radius used for non-dimensionalizing the data
throughout this work, i.e. rc, is the average of the spatially and temporally averaged radius
observed from the top and side views in the region of interest (0.1 < x/c0 < 1.2).

Figure 9 shows that the cavity surface exhibits a relatively stationary behaviour from
the tip until x/c0 ∼ 0.5 (formation region), and transitions to a more dynamic behaviour
further downstream (developed region). Comparing figures 9(a) and 9(b) reveals that
the spatial diameter variations of the roll-up region of the cavity (0.1 < x/c0 < 0.5)
observed from these two views are out of phase, which indicates the presence of a nearly
stationary twisting shape (double-helical mode) in this region of the cavity, similar to the
observations of Ye et al. (2023). This stationary double-helical deformation is also evident
in the time-averaged tip vortex cavity illustrated in figure 8(a). In order to extract the
cavity oscillation modes from the side-view and top-view diameters, similar to the method
employed by Bosschers (2018b), the cross-power spectral density (CPSD) is calculated
from the two-dimensional fast Fourier transform (FFT) of the data obtained from the two
views using the equation

S(kx, f ) = 120 + 10 log10

[
Gtop(kx, f ) G∗

side(kx, f )
r2

c

]
, (4.1)

where kx denotes the streamwise wavenumber, G(kx, f ) represents the 2-D FFT of the
radius data observed from the corresponding view, and G∗(kx, f ) is its complex conjugate.

The wavenumber–frequency dependence of S(kx, f ) is depicted in figure 10(a), where
the frequency and wavenumber are non-dimensionalized using the flow characteristic
frequency scale fref = U∞/c0 and the root chord length c0, respectively. Various modes
of cavity oscillation manifest themselves as curves with higher S(kx, f ) values, as shown
in figure 10(a). The phase difference between the 2-D FFT of the radius data obtained
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Figure 10. Cavity oscillatory mode extraction using two orthogonal views of the cavity. (a) The CPSD
obtained from (4.1). (b) Phase difference between 2-D FFT of cavity diameter viewed from the side and top.

from the side and top views is also required in order to distinguish between the breathing
and double-helical modes. The phase difference, illustrated in figure 10(b), is nearly
equal to 180◦ in the double-helical mode, and 0◦ in breathing mode oscillations. The
results depicted in these figures clearly indicate the presence of the breathing and the
double-helical modes.

The semi-analytical solution of Bosschers (2018b) is also plotted in figure 10(a) for
comparison with the results obtained from the simulations in this work. The analytical
solution for the dispersion relation of the cavity surface waves is

2πrcf ±

U∞
= Ũxkxrc + Ũθn ±

√
Kσ

√
−|kxrc| K′

n(|kxrc|)
Kn(|kxrc|) Tω, (4.2)

where Ũx and Ũθ are the non-dimensional axial and azimuthal velocities, respectively, Kn
and K′

n denote the modified Bessel function of the second kind and its first derivative,
respectively, Kσ is a non-dimensional stiffness coefficient, and Tω represents the effect of
surface tension, which is neglected in this work (Tω = 1).

According to (4.2), accurate prediction of the velocity profile of the tip vortex flow
under cavitating conditions is vital for the cavity surface waves to be captured correctly
by numerical simulations, which indicates the necessity of comparison of the velocity
profiles in cavitating conditions with experimental data. The azimuthal velocity profiles
obtained from simulations with different cavitation numbers are compared with the
experimental results reported by Pennings et al. (2015b) in figure 11. A maximum error
of 2.2 % is observed between the maximum non-dimensional velocity values obtained
from the simulations and the experimental data considering the uncertainty of the
experimental results, which demonstrates that the azimuthal velocity profiles obtained
from the simulations conducted in this work agree well with the experimental data for
various cavitation numbers.

It is evident from the experimental results of Pennings et al. (2015b) that the occurrence
of cavitation influences the azimuthal velocity profile of the wetted tip vortex by decreasing
the maximum azimuthal velocity and shifting its location towards larger radii. Bosschers
(2018a) proposed a model for the azimuthal velocity profile of cavitating tip vortices as

Uθ (r) = Γ

2πr

[
1 − r2

v

r2
v + ζ r2

c
exp

(
−ζ

r2 − r2
c

r2
v

)]
, (4.3)
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Figure 11. Comparison of non-dimensional azimuthal velocity profiles in simulations with experimental
results of Pennings et al. (2015b).

where ζ = 1.2564. Based on (4.3), the azimuthal velocity profile exhibits a local
maximum where

∂Uθ

∂r
= Γ

2πr2

[
−1 + r2

v

r2
v + ζ r2

c

(
1 + 2ζ

r2

r2
v

)
exp

(
−ζ

r2 − r2
c

r2
v

)]
= 0, (4.4)

which indicates that the radial position of the maximum azimuthal velocity in a cavitating
tip vortex depends merely on the cavity radius rc, which represents the extent of cavitation
occurring within the tip vortex, and the wetted tip vortex radius rv . On the other hand,
it is evident in figure 11 that the radial position of the maximum azimuthal velocity in
the cavitating tip vortex flow field in the simulations agrees with the experiments. It is
concluded that the extent of cavitation within the tip vortex flow is accurately predicted in
the simulations.

The coefficients in the analytical solution, i.e. Ũx, Ũθ and Kσ , are determined using the
results of the simulations and by fitting the analytical solution onto the dispersion relation
curves obtained from the simulations. The calculation of non-dimensional velocities Ũx

and Ũθ from the numerical results is carried out through spatial averaging of the axial and
azimuthal velocity values on the iso-surface of p = psat in the tip vortex flow field, since
this is used as a boundary condition to derive the analytical solution. As confirmed by
Bosschers (2018b), the stiffness coefficient Kσ can be approximated as Ũ2

θ . This method
yields Ũx = 1.03, Ũθ = 0.61 and Kσ = 0.37 for the coefficients. Tuning these coefficients
to fit the analytical solution to the numerical dispersion relations yields Ũx = 1.05, Ũθ =
0.68 and Kσ = 0.32, which agree well with the values calculated using the numerical
results of the velocity profiles.

The results illustrated in figure 10(a) indicate that all of the four double-helical
mode oscillations (n = ±2±) are captured in the simulations, and these modes of cavity
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oscillation observed in the simulations agree reasonably well with the analytical results.
The modes n = 2+ and n = −2− observed in the results obtained from the simulations
deviate from the analytical results, which might be resolved if the parameters of (4.2)
are adjusted further. Moreover, some high-CPSD curves with 0◦ phase difference can be
observed in figure 10(a) that are not predicted by the analytical model.

Another dominant stripe observed in figure 10(a), which exhibits a phase difference of
0◦ between the two views, shows the convection of the disturbances on the cavity surface.
The convection group velocity (cg) in this case is found to be cg = 0.9U∞, which is similar
to the value used by Bosschers (2018b), i.e. cg = 0.95U∞. Moreover, the dispersion curve
corresponding to the n = 1− mode collapses onto the convection line, as observed in
figure 10(a). In addition, figure 10(a) shows that the wavenumber–frequency lines obtained
for the breathing and double-helical modes are close in this case, and the dominance of
the double-helical mode oscillations in this case hinders the detection of the breathing
mode oscillations. Only traces of the breathing mode oscillations can be seen in the phase
difference between the two views shown in figure 10(b), which demonstrates that a more
effective method is required for the extraction of the breathing mode from the cavity
oscillations. These results indicate that the numerical framework developed in this work
is capable of accurately capturing the tip vortex cavity surface oscillations, which allows
further investigation of the cavity surface oscillations and their contribution to the radiated
noise.

4.3. Breathing mode oscillations
A major proportion of the TVC noise, especially at low and medium frequencies, is
attributed to the mode of oscillation responsible for cavity volume variations, i.e. the
breathing mode (Wang et al. 2023). Moreover, the centre frequency of the broadband hump
observed in the URN spectrum is hypothesized to be related to the resonance frequency of
the tip vortex cavity (Bosschers 2018b), and experimental evidence has been provided
by Pennings et al. (2015a) showing that this resonance frequency is the frequency of
the zero group velocity of the breathing mode. These connections linking the breathing
mode to the TVC noise necessitate a comprehensive investigation of this mode of cavity
oscillation. Therefore, in this subsection, this mode of oscillation is investigated in detail
for three cases with different cavitation numbers. First, in § 4.3.1, a method is developed
to extract the breathing mode from the cavity surface obtained from the simulations by
defining an effective radius for the tip vortex cavity. The temporally and spatially averaged
effective radii of the cavity are analysed in §§ 4.3.2 and 4.3.3, respectively. Subsubsection
4.3.4 focuses on the spatial and temporal development of the effective radius, delving into
the characteristics of local breathing mode oscillations. The POD is performed on the
effective radius data in § 4.3.5 to further analyse the streamwise development of the tip
vortex cavity’s volume.

4.3.1. Breathing mode extraction
In order to examine the breathing mode oscillations in detail, a method is required for
extracting this mode of cavity oscillation. Klapwijk et al. (2022) fitted an ellipse onto
the transverse cross-section of the cavity interface, and defined an effective radius as
reff = √

ab, where a and b are the semi-major and semi-minor axes of the fitted ellipse,
respectively. However, as explained by Wang et al. (2023), the method used in Klapwijk
et al. (2022) might lead to loss of deformation information when the cross-section is
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Aenclosure = πr2
eff

Figure 12. Calculation of the effective radius using the tip vortex cavity surface data.

non-elliptical. Such a highly non-elliptical transverse cross-section of the cavity was also
observed in our simulations, as shown in figure 12.

Since the breathing mode is the only cavity oscillation mode responsible for the cavity
volume variations, the idea of employing the cavity’s cross-sectional surface area for
calculating an effective radius is a sound approach. Based on this approach, first, the
transverse cross-section of the cavity at different downstream locations is extracted, the
area enclosed by which is then calculated. Subsequently, an effective radius is calculated
based on the area enclosed by the cavity cross-section as Aenclosure = πr2

eff , as depicted
in figure 12. The effective radius obtained using this method contains only the volume
variation information, and other forms of oscillation are excluded from this quantity.
Therefore, this parameter can be employed to investigate breathing mode oscillation in
the absence of the interference of other modes.

The two-dimensional Fourier transform of the effective radius obtained using this
method for the case with cavitation number σ = 1.7 is illustrated in figure 13,
which displays the wavenumber–frequency dependency of the breathing mode cavity
oscillations, together with the analytical solution. Based on this figure, the breathing mode
oscillations obtained from performing the extraction method on the simulation data agree
well with the analytical solution, which shows that this extraction method, together with
the numerical framework employed in this work, is able to accurately capture the breathing
mode oscillations.

4.3.2. Temporally averaged effective radius
The tip vortex cavity surface can be decomposed into a mean cavity surface and
time-dependent cavity surface oscillations. The formation of the mean cavity interface
is related to the overall roll-up process of the tip vortex. In this subsubsection, the
impact of the roll-up process on the mean cavity volume is investigated by analysing the
time-averaged effective radius. The goal here is to gain insight into the evolution of the tip
vortex cavity from its inception to decay.

Figure 14 shows the temporally averaged effective radius, denoted by 〈reff 〉
and non-dimensionalized by rc, with respect to the streamwise location (x)
non-dimensionalized by the root chord length (c0) for three cavitation numbers. According
to the streamwise development of the temporally averaged effective radius in these cases,
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Figure 14. Streamwise evolution of the temporally averaged effective radius at different cavitation numbers.

the cavity undergoes a region of growth, where the cavity is forming and the cavity
effective radius has a growing trend overall, followed by a decay region.

A comparison of different cavitation numbers indicates that the growth region shrinks as
the cavitation number increases. In the case with σ = 2.6, the decay begins approximately
at x/c0 = 0.12. In the case with σ = 1.7, the growth region extends until x/c0 = 0.4, and
when σ = 1.2, the growth continues further until x/c0 = 0.53. Furthermore, figure 14
reveals that decay occurs at a greater slope in higher cavitation numbers. The most
sustained cavity is observed in the case with σ = 1.2, where the slope of decay (dr∗/dx∗,
where r∗ = reff /rc and x∗ = x/c0) is approximately 0.146. This decay slope in the cases
σ = 1.7 and 2.6 increases to 0.288 and 1.027, respectively.

An interesting feature of the temporally averaged effective radius seen in figure 14 is
the spatial oscillations observed in the growth region. In the case with σ = 1.7, the cavity
volume exhibits periodic spatial variation with the downstream location in the growth
region (x/c0 < 0.4); however, in the decay region, these spatial variations of the cavity
volume disappear. When σ = 2.6, such variations are present until x/c0 = 0.23, which
can be attributed to the smaller growth region in this case compared to σ = 1.7. On the
other hand, as is evident in this figure, the spatial volumetric variations in the formation
region vanish when the cavitation number is lowered to σ = 1.2.
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Figure 15. Fourier transform of the non-dimensional temporally averaged effective radius variations.

The spatial variations of the temporally averaged effective radius in the cavity growth
region are further investigated by calculating their Fourier transform, which is illustrated
in figure 15. The horizontal axis in this figure represents the streamwise wavenumber (kx)
non-dimensionalized by the root chord length (c0). The large-amplitude low-wavenumber
components (kxc0 < 10) correspond to the overall growth and decay of the cavity. An
interesting feature observed in the case σ = 1.7 is the hump within the dimensionless
wavenumber range 80 < kxc0 < 177. The centre wavenumber of this hump is kxc0 = 100,
which corresponds to wavelength λ = 0.0628 c0. A local maximum is also evident for the
case σ = 2.6, which is less significant than the hump observed in the case σ = 1.7 due
to the spatial oscillations decaying earlier in the σ = 2.6 case compared to σ = 1.7. The
wavenumber of this hump is similar to that of the hump observed in the σ = 1.7 case,
indicating that these spatial variations originate from the tip vortex flow features and are
not related to the cavity characteristics. Moreover, the existence of this component in both
cases further supports the idea that it stems from the characteristics of the tip vortex flow
rather than the cavity’s characteristics.

To further investigate this phenomenon, the time-averaged flow field is analysed at
cavitation number σ = 1.7. The time-averaged tip vortex cavity depicted in figure 8(a)
exhibits a stationary double-helical structure in the growth region. The iso-surfaces of
the streamwise component of vortex stretching, i.e. (ω · ∇)u, normalized by U2∞/c2

0 and
illustrated in figure 8(b), exhibit twisted patterns similar to the time-averaged cavity
structure. This similarity demonstrates that the roll-up of streamwise coherent structures
from the boundary layer into the tip vortex generates negative and positive vortex
stretching regions swirling around the tip vortex cavity in a helical pattern, which leads
to the stationary twisted shape of the tip vortex cavity within the growth region. The
interactions between these structures and the tip vortex cavity may be a source of the
spatial volume variations observed within the growth region of the tip vortex cavity.

The possible range of pitch values for such helical structures is calculated to further
examine the correlation between the coherent structures swirling around the tip vortex
cavity and the cavity’s stationary morphology. Such a coherent structure rolling up into
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Figure 16. Temporal dynamics of spatially averaged effective radius. (a) Non-dimensional spatially averaged
effective radius temporal development. (b) Spectrum of the non-dimensional spatially averaged effective radius
variations.

the main tip vortex at radial distance r from the cavity centre would have pitch value
(2πr/Uθ )Ux. The results presented in figure 11 indicate that such a coherent structure
would have a streamwise-to-azimuthal velocity ratio within the approximate range 1 <

Ux/Uθ < 2, located within rv to 2rv from the centre of the cavity. It can be concluded that
the pitch of such helical coherent structures would be within a range that corresponds to the
non-dimensional streamwise wavenumber range kxc0 ∈ [29, 114]. It is evident in figure 15
that the high-amplitude components of the spatial cavity volume variations occur within
the range kxc0 ∈ [30, 180]. Comparison of these two ranges demonstrates that the range
of possible pitch values of coherent structures swirling around the tip vortex cavity and
the range of wavenumbers at which the spatial cavity volume variations occur are in good
agreement, further supporting the correlation between the coherent structures swirling
around the cavity and the stationary structure of the cavity.

4.3.3. Spatially averaged effective radius
The volume of the tip vortex cavity is an important quantity that can reveal any cyclic
process that the cavity might undergo. In this subsubsection, the spatially averaged
effective radius, shown as reff , is used to analyse the volume variations of the entire
vapour cavity in the region of interest (0.1 < x/c0 < 1.2). The spatially averaged effective
radius non-dimensionalized using rc is depicted in figure 16(a) as a function of the
non-dimensional time (t∗ = tU∞/c0) for the three cavitation numbers. The spatial
averaging for the case σ = 2.6 is carried out for the streamwise location range 0.1 <

x/c0 < 1.0 because the cavity collapses between x/c0 = 1.0 and x/c0 = 1.2 in this case.
It is evident in figure 16(a) that the volume of the cavity in the region of interest undergoes
temporal variations, which occur more intensely when σ = 1.7, where cavitation occurs
moderately, compared to the other cases.

The frequency spectra of the spatially averaged effective radius fluctuations are
illustrated in figure 16(b) obtained using the FFT algorithm. The spectra of the fluctuations
demonstrate that a large proportion of the vapour volume variations occur in the
low-frequency region fc0/U∞ < 3, which approximately corresponds to the range of
frequencies below 165 Hz. Moreover, these spectra exhibit specific features that require
further examination. The dimensionless frequency fc0/U∞ is denoted by f ∗ in the rest of
this paper.
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In the case σ = 1.2, a local maximum is observed at f ∗ = 0.37, and there are peaks
observed in the spectrum corresponding to the 3rd, 4th and 6th harmonics of this
frequency, i.e. f ∗ = 1.11, 1.48 and 2.22, respectively, with the 3rd harmonic at f ∗ = 1.11
being the most significant. Furthermore, the spectrum exhibits a local maximum at the
subharmonic of this distinct peak at f ∗ = 0.55 ∼ 1.11/2. Since there is no other significant
fluctuating component evident in the spectrum in this case, it can be concluded that all of
the major components of this spectrum originate from the same underlying source.

In the spectrum obtained from the case σ = 1.7, a peak is evident at f ∗ = 0.42,
together with its 2nd, 4th and 5th harmonics, corresponding to f ∗ = 0.83, 1.66 and 2.12,
respectively. The spectrum also exhibits a significant fluctuating component at fc0/U∞ =
0.23, which is not shown in the spectrum since its corresponding dimensional frequency
falls below 20 Hz. Furthermore, a distinct peak is observed at f ∗ = 1.02 in this case. In
addition, the spectrum in this case displays a peak at f ∗ = 0.55, similar to the σ = 1.2
case, and its 4th harmonics at f ∗ = 2.22. Another peak is also observed in this case, at
f ∗ = 1.15, which can be the 2nd harmonic of the f ∗ = 0.55 component.

In the case with cavitation number σ = 2.6, the time-averaged effective radius does not
experience significant fluctuations, with local maxima at f ∗ = 0.46 and its 2nd harmonic
f ∗ = 0.92. Furthermore, the component at f ∗ = 2.22 is observed in this case in a similar
way to the other cavitation numbers, in addition to its 2nd harmonic at f ∗ = 4.43. In this
case, a peak is observed at f ∗ = 4.25 that is not evident in other cases.

The features of the spatially averaged effective radius spectra discussed herein indicate
common features among different cavitation numbers. The presence of such components
for all cavitation numbers indicates that these fluctuation components originate from
the flow characteristics. In addition, in all of the cases, it is evident that the most
intense oscillations of the spatially averaged effective radius occur at frequencies
close to the flow characteristic frequency. On the other hand, the spectra of spatially
averaged effective radius fluctuations of these cases differ in some other features. Such
different components among different cavitation numbers indicate that these components
might be due to the specific characteristics of the cavity that forms at each cavitation
number.

Since the strength of the tip vortex is dependent on the lift coefficient, the lift
fluctuations potentially affect the overall variations of the tip vortex cavity volume.
Therefore, the temporal variations of the lift coefficient are investigated to reveal their
potential impact on cavity volume variations. The lift coefficient as a function of time
obtained from the simulations is depicted in figure 17(a), and figure 17(b) illustrates its
frequency spectrum. As is evident, the spectrum of the lift coefficient exhibits a distinct
peak at f ∗ = 0.21, and less significant local maxima at f ∗ = 0.35 and 0.48.

Comparison of the fluctuating components of the lift coefficient with the features of
spatially averaged effective radius spectra reveals some similarities between them. In the
case σ = 1.7, the most distinct peak of spatially averaged effective radius fluctuations
occurred at frequency f ∗ = 0.23, which is similar to the major fluctuating component
of the lift coefficient spectrum. Furthermore, the case σ = 1.2 exhibited mainly the
harmonics of f ∗ = 0.37 in its volume variation spectrum, which is consistent with the
second peak observed in the lift coefficient spectrum. The peak observed at f ∗ = 0.42
in the reff /rc spectrum of σ = 1.7 could also be related to this component of the lift
coefficient fluctuations.

The results presented in this subsubsection show that the variations in the vapour
volume of the tip vortex cavity are dominated mainly by the flow characteristics, and the
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Figure 17. Temporal dynamics of lift coefficient. (a) Temporal variations of lift coefficient. (b) Frequency
spectrum of lift coefficient variations.

characteristics of the cavity forming in different cases have less significant impact on the
overall variations in the vapour volume.

4.3.4. Spatial-temporal characteristics of breathing mode oscillations
The effective radius calculated using the method explained in § 4.3.1 is a function
of time and streamwise location; therefore, it can reveal the spatial and temporal
evolution of the breathing mode oscillations. The spatial and temporal variations of the
non-dimensionalized effective radius for the cavitation number σ = 1.7 are illustrated in
figure 18(a), and figure 18(b) displays the non-dimensional fluctuations of the effective
radius at every streamwise location by subtracting the time-averaged effective radius
(〈reff 〉) at the corresponding location from the effective radius value. The spatial variations
observed in this case in the cavity growth region 0.1 < x/c0 < 0.4 can be observed in
figure 18(a).

Furthermore, it is evident in figure 18(b) that the behaviour of the effective radius
fluctuations alters at x/c0 ∼ 0.3 in this case. In the region upstream of x/c0 = 0.3, pairs of
out-of-phase oscillating regions are observed marked by red dashed ellipses in figure 18(b).
These pairs are potential evidence of adjacent antinodes of standing breathing mode
waves, more evidence for which is provided in figure 19. Moreover, it can be observed
in figure 18(a) that at streamwise location x/c0 ∼ 0.22, the effective radius periodically
peaks approximately every tref = c0/U∞ (flow characteristic time scale), indicating a
fluctuating component of the effective radius at frequency fref = U∞/c0 ( f ∗ = 1) at this
location. On the other hand, in the region downstream of x/c0 = 0.3, the change in the
oscillatory behaviour is apparent, where the propagation of disturbances is characterized
by downstream propagation, as shown by a dashed line in figure 18(b). These lines, with
a slope nearly equal to 1, display the convection of disturbances at a propagation speed
close to U∞. Overall, these different observations within different regions of the cavity
reveal the change in cavity oscillatory behaviour as it advances from the growth region to
the decay region.

The spectra of the effective radius fluctuations as functions of streamwise location
at different cavitation numbers are shown in figure 19. It is evident in this figure that
similar to the behaviour of the spatially averaged effective radius fluctuations presented
in § 4.3.3, the major proportion of the local fluctuations of the effective radius occurs
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Figure 18. Spatial-temporal variations of the non-dimensional effective radius and its fluctuations (σ = 1.7):
(a) reff /rc, (b) (reff − 〈reff 〉)/rc.

at low frequencies (below f ∗ = 5). Furthermore, this figure further substantiates that
the oscillation characteristics of the breathing mode alter as the cavity travels away
from the tip. The presence of adjacent high- and low-amplitude components within the
growth region in all of the cases, which are specified using magenta dashed ellipses,
further supports the occurrence of standing waves within this region since these adjacent
high- and low-amplitude regions represent the antinodes and nodes of standing breathing
mode waves, respectively. Overall, according to figure 19, the breathing mode oscillations
occur at lower frequencies in the growth region, and higher frequency components of
the breathing mode oscillation intensify as the cavity travels downstream. The frequency
spectra of breathing mode oscillations at three streamwise locations at different cavitation
numbers are illustrated in figure 20. In the case σ = 1.7, the spectrum of the breathing
mode oscillations at x/c0 = 0.1 is also plotted, which reveals that the breathing mode
oscillations are small in amplitude at this location, and the intensification of the breathing
mode oscillations is apparent when the spectrum at this location is compared to locations
further downstream. This indicates that these breathing mode oscillations are not initially
present when the cavity forms, and are introduced onto the cavity surface as it flows
downstream.

In the case σ = 1.7, as mentioned earlier, adjacent regions of high- and low-amplitude
fluctuations are observed within the growth region, with the main peaks occurring at
f ∗ = 1.02, 1.15, 1.06 and 0.83. Within the transition region between the growth and
decay regions, other fluctuating components, especially at higher frequencies, appear
in the spectrum, such as the component at f ∗ = 2.77 and its 2nd harmonic f ∗ = 5.54.
As the cavity reaches the decay region, the effective radius fluctuations exhibit a more
broadband behaviour, with high-amplitude components at f ∗ = 0.23 and its 5th harmonic
f ∗ = 1.15. Comparison of these results with the results presented in § 4.3.3 indicates that
the fluctuations of the spatially averaged effective radius, which represents the volume of
the cavity, are dominated by the local breathing mode oscillations within the growth region
of the cavity.
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Figure 19. Spectrum of the effective radius fluctuations with respect to downstream location: (a) σ = 1.2,
(b) σ = 1.7, (c) σ = 2.6.

In the case σ = 1.2, the transition to more broadband effective radius fluctuations is
more pronounced when the cavity travels from the growth region to the decay region. The
growth region of the cavity in this case displays spatially periodic high- and low-amplitude
regions similar to those in other cases. These oscillations occur more intensely at f ∗ =
0.55 and its 2nd harmonic f ∗ = 1.1. Within the transition region, i.e. 0.4 < x/c0 < 0.6,
other components in f ∗ = 1.66 and f ∗ = 3.05 are introduced into the breathing mode
spectrum. In this case, the peak at f ∗ = 0.55 is present along the entire length of the
cavity.
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Figure 20. Frequency spectrum of the effective radius oscillations at multiple streamwise locations: (a)
σ = 1.2, (b) σ = 1.7, (c) σ = 2.6

At cavitation number σ = 2.6, the oscillatory behaviour alters from that of lower
cavitation numbers. The adjacent high- and low-amplitude regions within the growth
regions at very low frequencies, f ∗ < 0.2, display a streamwise variation similar to that
of σ = 1.7 within this region and frequency range. Furthermore, adjacent high- and
low-amplitude regions are observed at frequency f ∗ = 0.46 within the growth region
as well, although they also exhibit lower intensity. However, no significant broadband
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Figure 21. The cyclic behaviour of the tip vortex cavity’s front at σ = 2.6.

fluctuation is observed along the cavity, except for the end region, x/c0 > 0.9. An
interesting feature of the cavity in this case is the distinct fluctuating components within
the location range 0.3 < x/c0 < 0.5 at frequencies within the range 4.53 < f ∗ < 4.71.

Since the fine mesh region encompasses the entire cavity in the case σ = 2.6, the end
effects of the tip vortex cavity can be examined in this case. The results indicate that
the cavity undergoes a cyclic pattern of growth and detachment at its front, as illustrated
in figure 21. The cycle starts with the elongation of the cavity, which progresses until
it reaches a critical length, followed by detachment of a part of the cavity and shedding
downstream. After detachment, the end of the tip vortex cavity retracts until it reaches
a minimum length, and the cycle starts over with elongation. The frequency of this
cycle was found to be within the range 4.5 < fc0/U∞ < 5.5, which is similar to the
peak frequencies observed in the breathing mode oscillation spectrum in figure 19(c)
between x/c0 = 0.3 and x/c0 = 0.6. This highlights a potential correlation between the
breathing mode oscillation within this frequency range and the cyclic pattern of growth
and detachment observed in the tip vortex cavity’s front.

To further support that this cyclic tail behaviour is potentially related to the breathing
mode of cavity surface oscillation rather than surface tension effects, an estimate of the
Weber number is carried out using the equation

We = ρUx
2
rc

γ
, (4.5)

where rc is the cavity radius close to the location of cavity breakup (x/c0 = 1.0), Ux is
the azimuthally averaged axial velocity on the cavity surface at x/c0 = 1.0, and γ is the
surface tension. Using (4.5), We is estimated to be within the range We ∈ [200, 300], which
indicates that the inertial effects are dominant, and the effect of surface tension can be
assumed to be negligible.

4.3.5. Decomposition of breathing mode oscillations
The analysis of the effective radius reveals that the breathing mode oscillations exhibit
various characteristics in different regions of the cavity. In this subsubsection, POD is
employed to decompose the effective radius data and obtain the main breathing mode
oscillations. The time-averaged effective radius is subtracted from the results to extract the
fluctuating components. The analysis in this subsubsection is carried out only for the case
σ = 1.7.
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The energy contribution of the effective radius fluctuation modes is plotted in
figure 22(a), which shows that the fluctuations are distributed over a large number of
modes; however, since the goal here is to gain insight into the fluctuations and not
reduced-order modelling, the first few modes can be employed. Figure 22(b) shows the
first 10 modes of effective radius fluctuations. The change in behaviour downstream of the
cavity growth region, which corresponds to x > 0.4, is apparent in the fluctuation modes.
It is also evident from the modes that the fluctuations in the cavity growth region have
relatively small wavelengths and amplitudes compared to those of the decay region.

The amplification and alteration in the behaviour of the effective radius fluctuations
downstream of the cavity growth region indicate that some oscillations are introduced
onto the cavity interface in the roll-up process, as mentioned before. The source of these
perturbations should be sought in the temporal variations of the tip vortex flow field and
the roll-up of the wake into the tip vortex flow, which is not within the scope of this study.

4.4. Effect of cavity surface oscillations on pressure fluctuations
In order to investigate the contribution of cavity surface oscillations to the pressure
fluctuations in different cases, the pressure is probed at 19 points within the domain, as
shown in figure 23, on which an FFT is performed subsequently to obtain the spectra of
the pressure fluctuations. The spectra of the pressure fluctuations at these points exhibit
a similar behaviour in all cases; therefore, the pressure fluctuations spectrum at only one
point, which is located 0.5c0 away from the tip in the spanwise direction (x = 0, y = 0,
z = 0.5c0), is reported herein and is shown in figure 24 for the three cases.

It is evident in figure 24 that decreasing the cavitation number leads to more intense
pressure fluctuations. This indicates that tip vortex cavitation is, indeed, contributing to the
pressure fluctuations within the domain. Moreover, it can be observed that as the cavitation
number decreases, the spectrum shifts towards lower frequencies overall. Fluctuations in
pressure at low frequencies (below f ∗ = 1) are relatively significant in all cases. In addition
to these general features, the pressure fluctuations spectrum of each case exhibits some
unique characteristics.

The spectrum of pressure fluctuations for σ = 1.2 shows a distinct peak at f ∗ = 2.22,
with less significant peaks at its subharmonics f ∗ = 1.11 and 0.55. As discussed in § 4.3.3,
these components were observed in the spatially averaged effective radius of the cavity in
the σ = 1.2 case. In addition, the presence of these components in local breathing mode
oscillations was also discussed in § 4.3.4. It is observed in figure 20(a) that the peaks at
f ∗ = 1.11 and 0.55 are more significant within the growth region, and the higher frequency
peak at f ∗ = 2.22 is distinct at x/c0 = 0.98 within the decay region. Therefore, it can be
concluded that the growth and decay regions of the cavity contribute differently to the
pressure fluctuations, with the contribution of the decay region being more significant
since the peak at f ∗ = 2.22 possesses the highest amplitude in the pressure fluctuations
spectrum. Furthermore, the pressure fluctuations spectrum in this case exhibits other peaks
at f ∗ = 0.74, which is the 2nd harmonic of f ∗ = 0.37 observed in the spatially averaged
effective radius spectrum, and f ∗ = 1.66, the 3rd harmonic of f ∗ = 0.55.

At cavitation number σ = 1.7, the pressure fluctuations spectrum shows peaks at low
frequencies such as f ∗ = 0.42, and less significantly at f ∗ = 0.55, 0.65, 0.79 and 0.92.
The low-frequency components at f ∗ = 0.42, 0.55 and 0.69 were also observed in the
spatially averaged effective radius in this case in figure 16(b). The component at f ∗ = 0.42
is also evident within the growth region in figure 19(b), and the component at f ∗ = 0.79
is observed within the transition region from the growth regions to the decay regions,
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Figure 22. The POD of breathing mode oscillations (σ = 1.7). (a) Singular values of the effective radius
fluctuation modes. (b) First 10 modes of effective radius fluctuations obtained using POD (where ‘M’ denotes
mode).
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Pressure probes

Figure 23. Locations of pressure probing.
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Figure 24. Spectrum of the pressure fluctuations at point x = 0, y = 0, z = 0.5c0.

i.e. 0.4 < x/c0 < 0.6. In the pressure fluctuations spectrum, in this case, a hump is
observed within the frequency range 3.4 < f ∗ < 5.1, which is the peak at f ∗ = 3.79. This
peak is also observed in figure 19(b) within the decay region. Moreover, this peak is the 9th
harmonic of f ∗ = 0.42 observed in the breathing mode spectrum within the growth region.
Overall, similar to the σ = 1.2 case, the results demonstrate the different contributions of
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the breathing mode of oscillation within different regions of the cavity to the pressure
fluctuations.

In the case σ = 2.6, the pressure fluctuations spectrum exhibits a relatively small hump
within the frequency range 4.1 < f ∗ < 5.4, with a peak at f ∗ = 4.71. The spectrum
of breathing mode oscillations for this case depicted in figure 19(c) revealed intense
breathing mode oscillations within the frequency range 4.53 < f ∗ < 4.71 within the
streamwise location range of 0.28 < x/c0 < 0.55. Moreover, the spatially averaged
effective radius spectrum presented in figure 16(b) exhibited a peak at f ∗ = 1.66, the
subharmonic of which is observed in figure 24 at f ∗ = 0.83. Furthermore, the cyclic
growth and detachment behaviour of the cavity’s end was found to be occurring within
a non-dimensional frequency range 4.5 < f ∗ < 5.5, which indicates that this cyclic tail
effect is potentially influencing the pressure fluctuations within the domain as well.

An interesting common characteristic is observed in these results, which indicates that
the peak frequencies of the hump in the pressure fluctuations spectra, in addition to being
related to breathing mode oscillatory components within the decay region, are potentially
related to a harmonic of the frequency at which the adjacent low- and high-amplitude
regions within the growth region oscillate. In cases with σ = 1.2, 1.7 and 2.6, the peak
frequency of the hump was found to be f ∗ = 2.22, 3.79 and 4.71, respectively. These
components correspond to the 4th, 9th and 10th harmonics of the fluctuating components
observed within their corresponding cavities’ growth regions, which were f ∗ = 0.55, 0.42
and 0.46. In addition, it is observed that at higher cavitation numbers, the peak of the
pressure fluctuations corresponds to a higher harmonic of the breathing mode oscillatory
component within the growth region.

Based on the correlations between the cavity breathing mode oscillations and the
pressure fluctuations, it can be concluded that the growth region of the cavity is correlated
with the low-frequency peaks observed in the pressure fluctuations spectrum, and the
mid-range of this spectrum, where the hump in the pressure fluctuations spectrum occurs
as well, is correlated with the breathing mode oscillations in the decay region of the tip
vortex cavity.

5. Concluding remarks

In this study, tip vortex cavitating flow over a stationary elliptical NACA66(2)-415
hydrofoil was investigated numerically using a recently developed finite-element-based
cavitation flow solver for high Reynolds numbers. To investigate the effect of mesh
resolution on the simulation results and establish a method for estimation of the required
mesh resolution for large eddy simulations (LES) of TVC based on the flow properties, a
pressure-gradient-based length scale was developed employing the Rankine vortex model,
the Kutta–Jukowski theorem, and the turbulent boundary layer thickness. This new length
scale was then utilized for non-dimensionalization of the mesh resolution within the tip
vortex flow region. The simulations carried out in this study for various non-dimensional
mesh resolution values (�r∗) revealed that a �r∗ value of 18.5 or lower should be
utilized for the accurate simulation of tip vortex cavitating flows using LES. The effect of
mesh resolution on cavity surface oscillations was also investigated, the results of which
indicated that resolution �r∗ = 18.5 was able to capture these oscillations as well. The
oscillatory dynamics of the tip vortex cavity was investigated in the results obtained from
the simulations carried out with a mesh satisfying the proposed resolution requirements.
The simulations were conducted for three different cases that differed in cavitation number.
The cavity dynamics captured in the simulations was shown to agree well with the
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analytical solution. In addition, the azimuthal velocity profile of the cavitating tip vortex
agreed with the experimental data, further validating the numerical framework employed
in this work.

Since it is known that the breathing mode of oscillation is the most influential mode
of the surface oscillations concerning the generated noise compared to other modes, this
mode of oscillation was extracted from the numerical results using a parameter defined
based on the tip vortex cavity cross-sectional area, referred to as the cavity effective radius
(reff ). Investigation of the temporally averaged effective radius demonstrated that the tip
vortex cavity experiences different regions as it progresses away from the tip. The results
indicated that the growth region – i.e. the region close to the tip where the cavity is forming
and experiences an overall increasing trend in volume – shrinks with increasing cavitation
number. Furthermore, it was demonstrated that the decay occurs at an increased slope
in scenarios with higher cavitation numbers. Another observation was the occurrence
of spatial periodic cavity volume variations within the growth region. These variations
exhibit similar dominant wavenumbers between cases with different cavitation numbers,
which reveals that the dominant wavenumber of such oscillations is related to the mean tip
vortex roll-up process, and not the characteristics of the cavity forming in each specific
case. Further analysis of the vortex stretching term within the tip vortex flow region
indicated the presence of negative and positive vortex stretching regions swirling around
the cavity forming the stationary double-helical shape of the tip vortex cavity. Moreover,
the possible pitch values for the coherent structures swirling around the tip vortex cavity
were found to agree with the wavenumber range of the spatial volume variations of the
cavity, further supporting the argument that the roll-up of coherent structures into the tip
vortex is responsible for the spatial cavity volume variations.

Investigation of the spatially averaged effective radius indicated that the overall vapour
volume undergoes temporal variations, with the most intense oscillations occurring in
the moderately cavitating case, i.e. σ = 1.7. Furthermore, it was observed that the most
significant cavity volume fluctuation components possessed frequencies similar to the flow
characteristic frequency. The temporal variations of the lift coefficient were examined,
which revealed potential correlations between the lift force fluctuations and the tip vortex
cavity overall volume variations. These analyses indicated that the flow characteristics play
a major role in the variations of overall cavity volume.

Subsequently, the local breathing mode oscillations were investigated. The results
provided evidence for the potential occurrence of waves in standing breathing mode within
the growth region of the tip vortex cavity. More evidence was provided for the alteration of
the cavity’s oscillatory behaviour between the growth and decay regions, employing POD.
Moreover, the results indicated that the breathing mode oscillations are not inherent to the
tip vortex cavity, and such oscillations appear and intensify as the cavity travels away from
the tip. Therefore, the tip vortex cavity displays different characteristics in the growth and
decay regions. The breathing mode oscillations within the decay region were observed to
extend over a more broadband range of frequencies compared to the growth region.

Overall, the breathing mode oscillations within the growth region were observed to
occur within the low-frequency range, and such oscillations within the decay region were
found to possess higher frequencies. The simulations revealed that at a low cavitation
number, similar to the case σ = 1.2 in this work, no significant peak was observed in
the breathing mode spectrum; however, distinct peaks were observed at higher cavitation
numbers, with the most intense ones occurring in the case σ = 1.7. Furthermore,
similar to the spatially averaged effective radius fluctuation spectrum, the local breathing
mode oscillation in the case σ = 2.6 extended to higher frequencies compared to lower
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cavitation numbers. An interesting feature of the tip vortex cavity was observed when
σ = 2.6, which was the cyclic growth and detachment behaviour of the cavity at its end. It
was observed that the cavity undergoes a process of elongation, detachment and retraction
at its end, which was found to occur within a frequency range 4.5 < fc0/U∞ < 5.5. The
local breathing mode oscillations in this working condition also showed fluctuations within
this frequency range, indicating a potential correlation between the cyclic tail behaviour of
the tip vortex cavity and its breathing mode oscillations. This aspect of tip vortex cavitation
requires further investigation.

The pressure fluctuations within the domain were investigated in cases with different
cavitation numbers. The results indicated that decreasing the cavitation number, which
leads to a higher extent of TVC, results in more intense pressure fluctuations. Another
effect of decreasing the cavitation number was found to be shifting the pressure
fluctuations spectrum towards lower frequencies, which is similar to the behaviour of
breathing mode oscillations. Comparison of the pressure fluctuations spectra at different
cavitation numbers with the overall vapour volume variations and local breathing mode
oscillations at the corresponding cavitation numbers demonstrated the existence of
correlations between the pressure fluctuations and the breathing mode of oscillation. The
low-frequency components of the pressure fluctuations were found to be correlated with
the growth region of the cavity. The centre frequencies of the humps observed in the
pressure fluctuations spectra were found to be related to the breathing mode oscillations
within the decay region in all cases. Despite the existence of these correlations, there
were some features in the pressure fluctuations that were not related to the breathing
mode of the cavity surface oscillation. Moreover, some significant fluctuating components
were observed in the breathing mode oscillations that did not affect the pressure
fluctuations despite having high amplitudes. Therefore, further investigation is required
to thoroughly understand the correlations between the breathing mode oscillations and
pressure fluctuations.
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