Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T17:06:24.914Z Has data issue: false hasContentIssue false

Numerical simulation of two-dimensional Faraday waves with phase-field modelling

Published online by Cambridge University Press:  23 September 2011

Kentaro Takagi*
Affiliation:
Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwaketyo Sakyoku, Kyoto 606-8502, Japan
Takeshi Matsumoto
Affiliation:
Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwaketyo Sakyoku, Kyoto 606-8502, Japan
*
Email address for correspondence: [email protected]

Abstract

A fully nonlinear numerical simulation of two-dimensional Faraday waves between two incompressible and immiscible fluids is performed by adopting the phase-field method with the Cahn–Hilliard equation due to Jacqmin (J. Comput. Phys., vol. 155, 1999, pp. 96–127). Its validation is checked against the linear theory. In the nonlinear regime, qualitative comparison is made with an earlier vortex-sheet simulation of two-dimensional Faraday waves by Wright, Yon & Pozrikidis (J. Fluid Mech., vol. 400, 2000, pp. 1–32). The vorticity outside the interface region is studied in this comparison. The period tripling state, which is observed in the quasi-two-dimensional experiment by Jiang, Perlin & Schultz (J. Fluid Mech., vol. 369, 1998, pp. 273–299), is successfully simulated with the present phase-field method.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2000 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139165.CrossRefGoogle Scholar
2. Arbell, H. & Fineberg, J. 1999 Temporally harmonic oscillons in Newtonian fluids. Phys. Rev. Lett. 85, 756759.CrossRefGoogle Scholar
3. Celani, A., Mazzino, A., Muratore-Ginanneschi, P. & Vozella, L. 2009 Phase-field model for the Rayleigh–Taylor instability of immiscible fluids. J. Fluid Mech. 622, 115134.CrossRefGoogle Scholar
4. Chen, P. & Viñals, J. 1999 Amplitude equation and pattern selection in Faraday waves. Phys. Rev. E 60, 559570.CrossRefGoogle ScholarPubMed
5. Chen, P. & Wu, K. 2000 Subcritical bifurcations and nonlinear balloons in Faraday waves. Phys. Rev. Lett. 85, 38133816.CrossRefGoogle ScholarPubMed
6. Das, S. P. & Hopfinger, E. J. 2008 Parametrically forced gravity waves in a circular cylinder and finite-time singularity. J. Fluid Mech. 599, 205228.CrossRefGoogle Scholar
7. Eyre, D. J. 1990 An unconditionally stable one-step scheme for gradient systems.http://www.math.utah.edu/~eyre/research/methods/stable.ps.Google Scholar
8. Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond.  121, 299–340 (see also http://openlibrary.org/books/OL6976494M/Experimental_researches_in_chemistry_and_physics, which is a scan of the book: Faraday, M. 1859 Experimental researches in chemistry and physics. R. Taylor and W. Francis, London).Google Scholar
9. Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modelling. J. Comput. Phys. 155, 96127.CrossRefGoogle Scholar
10. Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.CrossRefGoogle Scholar
11. Jiang, L., Perlin, M. & Schultz, W. W. 1998 Period tripling and energy dissipation of breaking standing waves. J. Fluid Mech. 369, 273299.CrossRefGoogle Scholar
12. Jiang, L., Ting, C., Perlin, M. & Schultz, W. W. 1996 Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries. J. Fluid Mech. 329, 275307.CrossRefGoogle Scholar
13. Kityk, A. V., Embs, J., Mekhonoshin, V. V. & Wagner, C. 2005 Spatiotemporal characterization of interfacial Faraday waves by means of a light absorption technique. Phys. Rev. E 72, 036209.CrossRefGoogle ScholarPubMed
14. Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.CrossRefGoogle Scholar
15. Lioubashevski, O., Arbell, H. & Fineberg, J. 1996 Dissipative solitary states in driven surface waves. Phys. Rev. Lett. 76, 39593962.CrossRefGoogle ScholarPubMed
16. Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.CrossRefGoogle Scholar
17. Murakami, Y. & Chikano, M. 2001 Two-dimensional direct numerical simulation of parametrically excited surface waves in viscous fluid. Phys. Fluids 13, 6574.CrossRefGoogle Scholar
18. Périnet, N., Juric, D. & Tuckerman, L. S. 2009 Numerical simulation of Faraday waves. J. Fluid Mech. 635, 126.CrossRefGoogle Scholar
19. Perlin, M. & Schultz, W. W. 2000 Capillary effects on surface waves. Annu. Rev. Fluid Mech. 31, 241274.CrossRefGoogle Scholar
20. Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220252.CrossRefGoogle Scholar
21. Pucci, G., Fort, E., Ben Amar, M. & Couder, Y. 2011 Mutual adaptation of a Faraday instability pattern with its flexible boundaries in floating fluid drops. Phys. Rev. Lett. 106, 024503.CrossRefGoogle ScholarPubMed
22. Saad, Y. 2003 Iterative Methods for Sparse Linear Systems. SIAM.CrossRefGoogle Scholar
23. Shani, I., Cohen, G. & Fineberg, J. 2010 Localized instability on the route to disorder in Faraday waves. Phys. Rev. Lett. 104, 184507.CrossRefGoogle ScholarPubMed
24. Ubal, S., Giavedoni, M. D. & Saita, F. A. 2003 A numerical analysis of the influence of the liquid depth on two-dimensional Faraday waves. Phys. Fluids 15, 30993113.CrossRefGoogle Scholar
25. Wright, J., Yon, S. & Pozrikidis, C. 2000 Numerical studies of two-dimensional Faraday oscillations of inviscid fluids. J. Fluid Mech. 400, 132.CrossRefGoogle Scholar