Published online by Cambridge University Press: 20 April 2006
Free and forced oscillations in a basin that is connected through a narrow canal to either the open sea or a second basin are considered on the assumption that the spatial variation of the free-surface displacement is negligible. The free-surface displacement in the canal is allowed to be finite, subject only to the restriction (in addition to that implicit in the approximation of spatial uniformity) that the canal does not run dry. The resulting model yields a Hamiltonian pair of phase-plane equations for the free oscillations, which are integrated in terms of elliptic functions on the additional assumption that the kinetic energy of the motion in the basin(s) is negligible compared with that in the canal or otherwise through an expansion in an amplitude parameter. The corresponding model for forced oscillations that are limited by radiation damping yields a generalization of Duffing's equation for an oscillator with a soft spring, the solution of which is obtained as an expansion in the amplitude of the fundamental term in a Fourier expansion. Equivalent circuits are developed for the various models.