Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T23:43:29.022Z Has data issue: false hasContentIssue false

Nonlinear compressible magnetoconvection Part 2. Streaming instabilities in two dimensions

Published online by Cambridge University Press:  26 April 2006

M. R. E. Proctor
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK
N. O. Weiss
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK
D. P. Brownjohn
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK
N. E. Hurlburt
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK Permanent address: Lockheed Palo Alto Research Laboratories, Palo Alto, CA 94304, USA.

Abstract

We have conducted further numerical experiments on two-dimensional fully compressible convection in an imposed vertical magnetic field and interpreted the results by reference to appropriate low-order models. Here we focus on streaming instabilities, involving horizontal shear flows, which form an important mechanism for the breakdown of steady convection in relatively weak fields for boxes of sufficiently small aspect ratio. While these shearing modes can arise even in the absence of a field, they will typically lead only to travelling and modulated waves unless there is a field to provide a restoring force. For magnetoconvection a new and dramatic form of pulsating wave appears after a complex sequence of secondary bifurcations.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cttaneo, F. 1984 Compressible magnetoconvection. PhD dissertation, University of Cambridge.
Cattaneo, F., Hurlburt, N. E. & Toomre, J. 1990 Supersonic convection. Astrophys. J. 349, L63L66.Google Scholar
Coughlin, K. T. & Marcus, P. S. 1992a Modulated waves in Taylor-Couette flow. Part 1. Analysis. J. Fluid Mech. 234, 118.Google Scholar
Coughlin, K. T. & Marcus, P. S. 1992b Modulated waves in Taylor-Couette flow. Part 2. Numerical simulation. J. Fluid Mech. 234, 1946.Google Scholar
Dangelmayr, G. 1986 Steady-state mode interaction in the presence of O(2) symmetry. Dyn. Stab. Syst. 1, 159185.Google Scholar
Dangelmayr, G. & Knobloch, E. 1987 The Takens-Bogdanov bifurcation with O(2) symmetry. Phil. Trans. R. Soc. A 322, 243279.Google Scholar
Deardorff, J. W. & Willis, G. E. 1965 The effect of two-dimensionality on the suppression of thermal turbulence. J. Fluid Mech. 23, 337353.Google Scholar
Drake, J. F., Finn, J. M., Guzdar, P. N., Shapiro, V., Shevchenko, V., Waelbroeck, F., Hassam, A. B., Liu, C. S. & Sagdeev, R. 1992 Peeling of convection cells and the generation of sheared flow. Phys. Fluids B 4, 488491.Google Scholar
Finn, J. M. 1993 Nonlinear interaction of Rayleigh-Taylor and shear instabilities. Phys. Fluids B 5, 413432.Google Scholar
Finn, J. M., Drake, J. F. & Guzdar, P. N. 1992 Instability of vortices and generation of sheared flow. Phys. Fluids B 4, 27582768.Google Scholar
Ginet, G. P. & Sudan, R. N. 1987 Numerical observations of dynamic behavior in two-dimensional compressible convection. Phys. Fluids 30, 16671677.Google Scholar
Graham, E. 1975 Numerical simulation of two-dimensional compressible convection. J. Fluid Mech. 70, 689703.Google Scholar
Grossmann-Doerth, U., Knölker, M., Schüssler, M. & Solanki, S. K. 1994 The deep layers of solar magnetic elements. Astron. Astrophys. 285, 648654.Google Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Howard, L. N. & Krishnamurti, R. 1986 Large-scale flow in turbulent convection: a mathematical model. J. Fluid Mech. 170, 385410.Google Scholar
Hughes, D. W. & Proctor, M. R. E. 1988 Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy. Ann. Rev. Fluid Mech. 20, 187223.Google Scholar
Hughes, D. W. & Proctor, M. R. E. 1990 A lower order model for the shear instability of convection, chaos and the effect of noise. Nonlinearity 3, 127153.Google Scholar
Hurlburt, N. E., Proctor, M. R. E., Weiss, N. O. & Brownjohn, D. P. 1989 Nonlinear compressible magnetoconvection. Part 1. Travelling waves and oscillations. J. Fluid Mech. 207, 587628.Google Scholar
Hurlburt, N. E. & Toomre, J. 1988 Magnetic fields interacting with nonlinear compressible convection. Astrophys. J. 327, 920932.Google Scholar
Hurlburt, N. E., Toomre, J. & Massaguer, J. M. 1984 Two-dimensional compressible convection extending over multiple scale heights. Astrophys. J. 282, 557573.Google Scholar
Jones, C. A. & Proctor, M. R. E. 1987 Strong spatial resonance and travelling waves in Bénard convection. Phys. Lett. A 21, 224227.Google Scholar
Julien, K. 1991 Strong spatial resonance in convection. PhD dissertation, University of Cambridge.
Julien, K., Brummell, N. & Hart, J. E. 1993 Travelling waves in convection with large-scale flows. Preprint.
Knobloch, E. & Proctor, M. R. E. 1981 Nonlinear periodic convection in double-diffusive systems. J. Fluid Mech. 108, 291316.Google Scholar
Knobloch, E., Proctor, M. R. E. & Weiss, N. O. 1992 Heteroclinic bifurcations in a simple model of double-diffusive convection. J. Fluid Mech. 239, 273292.Google Scholar
Knobloch, E., Weiss, N. O. & Da Costa, L. N. 1981 Oscillatory and steady convection in a magnetic field. J. Fluid Mech. 113, 153186.Google Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. 78, 19811985.Google Scholar
Landsberg, A. S. & Knobloch, E. 1991 Direction-reversing traveling waves. Phys. Lett. A 159, 1720.Google Scholar
Lantz, S. R. 1994 Magnetoconvection dynamics in a stratified layer. II. A low-order model of the tilting instability. Astrophys. J. (in press).Google Scholar
Lantz, S. R. & Sudan, R. N. 1994 Magnetoconvection dynamics in a stratified layer. I. 2D simulations and visualization. Astrophys. J. (in press).Google Scholar
Matthews, P. C. 1993 Compressible magnetoconvection in three dimensions. In Theory of Solar and Planetary Dynamos (ed. M. R. E. Proctor, P. C. Matthews & A. M. Rucklidge), pp. 211218. Cambridge University Press.
Matthews, P. C., Proctor, M. R. E., Rucklidge, A. M. & Weiss, N. O. 1993 Pulsating waves in nonlinear magnetoconvection. Phys. Lett. A 183, 6975.Google Scholar
Matthews, P. C., Proctor, M. R. E., Rucklidge, A. M. & Weiss, N. O. 1994a Pulsating waves in two- and three-dimensional magnetoconvection. In preparation.
Matthews, P. C., Proctor, M. R. E. & Weiss, N. O. 1994b Compressible magnetoconvection in three dimensions: planform selection and weakly nonlinear behaviour. J. Fluid Mech. (submitted).Google Scholar
Moore, D. R. & Weiss, N. O. 1990 Dynamics of double convection. Phil. Trans. R. Soc. Lond. A 332, 121134.Google Scholar
Nordlund, Å. & Stein, R. F. 1990 Solar magnetoconvection. In Solar photosphere: structure, convection and magnetic fields (ed. J. O. Stenflo), pp. 191211. Kluwer.
Prat, J., Massaguer, J. M. & Mercader, I. 1993 Mean flow in 2D thermal convection. In Mixing in geophysical flow (ed. J. M. Redondo & O. Metais). Barcelona: Diseño Gráfico.
Proctor, M. R. E. 1986 Columnar convection in double-diffusive systems. Contemp. Maths 56, 267276.Google Scholar
Proctor, M. R. E. 1992 Magnetoconvection. In Theory and Observation of Sunspots (ed. J. H. Thomas & N. O. Weiss), pp. 221241. Kluwer.
Proctor, M. R. E. & Jones, C. A. 1988 The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonance. J. Fluid Mech. 188, 301335.Google Scholar
Proctor, M. R. E. & Weiss, N. O. 1982 Magnetoconvection. Rep. Prog. Phys. 45, 13171379.Google Scholar
Proctor, M. R. E. & Weiss, N. O. 1990 Normal forms and chaos in thermosolutal convection. Nonlinearity 3, 619637.Google Scholar
Proctor, M. R. E. & Weiss, N. O. 1993 Symmetries of time-dependent magnetoconvection. Geophys. Astrophys. Fluid Dyn. 70, 137160.Google Scholar
Rucklidge, A. M. & Matthews, P. C. 1993 Shearing instabilities in magnetoconvection. In Theory of Solar and Planetary Dynamos (ed. M. R. E. Proctor, P. C. Matthews & A. M. Rucklidge), pp. 257264. Cambridge University Press (referred to herein as RM).
Rucklidge, A. M. & Matthews, P. C. 1994 Analysis of the shearing instability in nonlinear magnetoconvection. In preparation (referred to herein as RM).
Schnaubelt, M. & Busse, F. H. 1992 Convection in a rotating cylindrical annulus. Part 3. Vacillating and spatially modulated flows. J. Fluid Mech. 245, 155173.Google Scholar
Thomas, J. H. & Weiss, N. O. 1992 The theory of sunspots. In Theory and Observation of Sunspots (ed. J. H. Thomas & N. O. Weiss), pp. 359. Kluwer.
Weiss, N. O. 1981 Convection in an imposed magnetic field. Part 1. The development of nonlinear convection. J. Fluid Mech. 108, 247272.Google Scholar
Weiss, N. O. 1989 Time-dependent compressible magnetoconvection. In Solar and Stellar Granulation (ed. R. J. Rutten & G. Severino), pp. 471480. Kluwer.
Weiss, N. O. 1991 Magnetoconvection. Geophys. Astrophys. Fluid Dyn. 62, 229247.Google Scholar
Weiss, N. O., Brownjohn, D. P., Hurlburt, N. E. & Proctor, M. R. E. 1990 Oscillatory convection in sunspot umbrae. Mon. Not. R. Astron. Soc. 245, 434452.Google Scholar