Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T16:48:34.886Z Has data issue: false hasContentIssue false

Non-axisymmetric oscillations of liquid bridges

Published online by Cambridge University Press:  26 April 2006

A. Sanz
Affiliation:
Laboratorio de Aerodinámica, ETSI Aeronäuticos, Universidad Politécnica, 28040 Madrid, Spain
J. Lopez Diez
Affiliation:
Laboratorio de Aerodinámica, ETSI Aeronäuticos, Universidad Politécnica, 28040 Madrid, Spain

Abstract

The main characteristics of the non-axisymmetric oscillations of a liquid bridge have been considered: free frequencies, deformation modes and the influence of an outer liquid. Oscillations of this kind do not show stability changes.

The Plateau technique has been used to obtain the resonant frequencies of the bridge when lateral perturbations are imposed. The results obtained are in good agreement with the theoretical ones when the influence of the outer liquid is considered. Moreover, lateral oscillations observed in experiments performed with liquid bridges in space can be explained with this model.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, H. F. 1982 Coupled oscillations of a solidly rotating liquid bridge. Acta Astron. 9, 547563.Google Scholar
Bendat, J. S. & Piersol, A. G. 1971 Random Data: Analysis and Measurement Procedures. Wiley-Interscience.
Bisch, C., Lasek, A. & Rodot, H. 1982 Comportement hydrodynamique de volumes liquides spheriques semi-libres en apesanteur simulée. J. Méch. Théor. Appl. 1, 165183.Google Scholar
Elagin, M. P., Lebedev, A. P. & Tsmelev, A. V. 1982 Laboratory modeling of the stability and dynamics of free liquid zones. In Hydromechanics and Heat and Mass Transfer in Zero-Gravity (in Russian), pp. 2433. Moscow: Nauka.
Entov, V. M. & Yarin, A. L. 1984 The dynamics of liquid jets in air. J. Fluid Mech. 140, 91111.Google Scholar
Fowle, A. A., Wang, C. A. & Strong, P. F. 1979 Experiments on the stability of conical and cylindrical liquid columns at low Bond numbers. ADL Ref. C-82435, Arthur D. Little.
Lee, H. C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev. 18, 364369.Google Scholar
Levich, G. L. 1962 Physicochemical Hydrodynamics, p. 592. Prentice-Hall.
Martínez, I. 1978 Floating zone. Equilibrium shapes and stability criteria. In COSPAR Space Research, vol. 18, pp. 519522. Pergamon.
Martínez, I. 1987a Stability of liquid bridges. Results of SL-D1 experiment. Acta Astron. 8, 449453.Google Scholar
Martínez, I. 1987b Stability of long liquid columns in Spacelab D-1. ESA SP-256, pp. 235240.
Martínez, I. & Rivas, D. 1982 Plateau tank facility for simulation of Spacelab experiments. Acta Astron. 9, 339342.Google Scholar
Meseguer, J. 1983 The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130, 123151.Google Scholar
Meseguer, J., Mayo, L. A., Llorente, J. C. & Fernández, A. 1985 Experiments with liquid bridges in simulated microgravity. J. Cryst. Growth 73, 609621.Google Scholar
Meseguer, J. & Sanz, A. 1985 Numerical and experimental study of the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 153, 83101.Google Scholar
Meseguer, J. & Sanz, A. 1987 Oscilaciones de puentes liquidos en el Spacelab D1. Anales RSE Física 1, 5768.Google Scholar
Meseguer, J., Sanz, A. & López, J. 1986 Liquid bridge breakages aboard Spacelab-D1. J. Cryst. Growth 78, 325334.Google Scholar
Rayleigh, Lord 1945 The Theory of Sound, vol. 2, pp. 351355. Dover.
Rhone-Poulenc 1978 Rhodorsil silicones. Ref. X-03–03b. Rhone-Poulenc Chimie Fine, Department Silicones, Paris.
Rivas, D. & Meseguer, J. 1984 One-dimensional, self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 138, 417429.Google Scholar
Russo, M. J. & Steen, P. H. 1986 Instability of rotund capillary bridges to general disturbances: experiment and theory. J. Colloid Interface Sci. 113, 154163.Google Scholar
Sanz, A. 1985 The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 156, 101140.Google Scholar
Sanz, A. & Martínez, I. 1983 Minimum volume for a liquid bridge between equal disks. J. Colloid Interface Sci. 93, 235240.Google Scholar
Struik, D. J. 1957 Classical Differential Geometry. Addison Wesley.
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Vega, J. M. & Perales, J. M. 1983 Almost cylindrical isorotating liquid bridges for small Bond numbers. In Materials Science under Microgravity ESA SP-191, pp. 247252.