Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T05:32:38.882Z Has data issue: false hasContentIssue false

Non-axisymmetric flows in a differential-disk rotating system

Published online by Cambridge University Press:  25 June 2015

Tony Vo
Affiliation:
The Sheard Lab, Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
Luca Montabone
Affiliation:
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Peter L. Read
Affiliation:
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Gregory J. Sheard*
Affiliation:
The Sheard Lab, Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

The non-axisymmetric structure of an unstable Stewartson shear layer generated via a differential rotation between flush disks and a cylindrical enclosure is investigated numerically using both three-dimensional direct numerical simulation and a quasi-two-dimensional model. Previous literature has only considered the depth-independent quasi-two-dimensional model due to its low computational cost. The three-dimensional model implemented here highlights the supercritical instability responsible for the polygonal deformation of the shear layer in the linear and nonlinear growth regimes and reveals that linear stability analysis is capable of accurately determining the preferred azimuthal wavenumber for flow conditions near the onset of instability. This agreement is lost for sufficiently forced flows where nonlinear effects encourage the coalescence of vortices towards lower-wavenumber structures. Time-dependent flows are found for large Reynolds numbers defined based on the Stewartson layer thickness and azimuthal velocity differential. However, this temporal behaviour is not solely characterized by Reynolds number but is rather a function of both the Rossby and Ekman numbers. At high Ekman and Rossby numbers, unsteady flow emerges through a small-scale azimuthal destabilization of the axial jets within the Stewartson layers; at low Ekman numbers, unsteady flow emerges through a modulation in the strength of one of the axial vortices rolled up by non-axisymmetric instability of the Stewartson layer.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Space Science Institute, Boulder, CO 80301, USA.

References

Afanasyev, Y. D., Rhines, P. B. & Lindahl, E. G. 2008 Emission of inertial waves by baroclinically unstable flows: laboratory experiments with altimetric imaging velocimetry. J. Atmos. Sci. 65 (1), 250262.Google Scholar
Aguiar, A. C. B.2008 Instabilities of a shear layer in a barotropic rotating fluid. PhD thesis, University of Oxford.Google Scholar
Aguiar, A. C. B., Read, P. L., Wordsworth, R. D., Salter, T. & Hiro Yamazaki, Y. 2010 A laboratory model of Saturn’s north polar hexagon. Icarus 206 (2), 755763.Google Scholar
Bergeron, K., Coutsias, E. A., Lynov, J. P. & Nielsen, A. H. 2000 Dynamical properties of forced shear layers in an annular geometry. J. Fluid Mech. 402 (1), 255289.Google Scholar
Bergmann, R., Tophøj, L., Homan, T. A. M., Hersen, P., Andersen, A. & Bohr, T. 2011 Polygon formation and surface flow on a rotating fluid surface. J. Fluid Mech. 679 (1), 415431.Google Scholar
Blackburn, H. M., Barkley, D. & Sherwin, S. J. 2008 Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271304.Google Scholar
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.CrossRefGoogle Scholar
Boisson, J., Cébron, D., Moisy, F. & Cortet, P.-P. 2012 Earth rotation prevents exact solid-body rotation of fluids in the laboratory. Europhys. Lett. 98 (5), 59002.Google Scholar
Calkins, M. A., Noir, J., Eldredge, J. D. & Aurnou, J. M. 2010 Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22 (8), 086602.CrossRefGoogle Scholar
Carmo, B. S., Meneghini, J. R. & Sherwin, S. J. 2010 Secondary instabilities in the flow around two circular cylinders in tandem. J. Fluid Mech. 644, 395431.CrossRefGoogle Scholar
Charlton, A. J., O’Neill, A., Lahoz, W. A. & Berrisford, P. 2005 The splitting of the stratospheric polar vortex in the southern hemisphere, September 2002: dynamical evolution. J. Appl. Maths 62 (3), 590602.Google Scholar
Chomaz, J. M., Rabaud, M., Basdevant, C. & Couder, Y. 1988 Experimental and numerical investigation of a forced circular shear layer. J. Fluid Mech. 187, 115140.Google Scholar
Fletcher, L. N., Irwin, P. G. J., Orton, G. S., Teanby, N. A., Achterberg, R. K., Bjoraker, G. L., Read, P. L., Simon-Miller, A. A., Howett, C., de Kok, R., Bowles, N, Calcutt, S. B., Hesman, B. & Flasar, F. M. 2008 Temperature and composition of Saturn’s polar hot spots and hexagon. Science 319 (5859), 7981.Google Scholar
Früh, W. G. & Nielsen, A. H. 2003 On the origin of time-dependent behaviour in a barotropically unstable shear layer. Nonlinear Process. Geophys. 10 (3), 289302.Google Scholar
Früh, W. G. & Read, P. L. 1999 Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices. J. Fluid Mech. 383, 143173.CrossRefGoogle Scholar
Garate-Lopez, I., Hueso, R., Sanchez-Lavega, A., Peralta, J., Piccioni, G. & Drossart, P. 2013 A chaotic long-lived vortex at the southern pole of Venus. Nat. Geosci. 6 (4), 254257.Google Scholar
Godfrey, D. A. 1988 A hexagonal feature around Saturn’s north pole. Icarus 76, 335356.Google Scholar
Hart, J. E. & Kittelman, S. 1996 Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder. Phys. Fluids 8 (3), 692696.CrossRefGoogle Scholar
Henderson, R. D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.Google Scholar
Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29 (1), 3960.Google Scholar
Hollerbach, R. 2003 Instabilities of the Stewartson layer. Part 1. The dependence on the sign of $Ro$ . J. Fluid Mech. 492, 289302.Google Scholar
Hollerbach, R., Futterer, B., More, T. & Egbers, C. 2004 Instabilities of the Stewartson layer. Part 2. Supercritical mode transitions. Theor. Comput. Fluid Dyn. 18 (2), 197204.CrossRefGoogle Scholar
Hussam, W. K., Thompson, M. C. & Sheard, G. J. 2011 Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number. Intl J. Heat Mass Transfer 54 (5), 10911100.Google Scholar
Karniadakis, G. E. 1990 Spectral element–Fourier methods for incompressible turbulent flows. Comput. Meth. Appl. Mech. Engng 80 (1), 367380.Google Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.Google Scholar
Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics. (Numerical Mathematics and Scientific Computation) , Oxford Science Publications.Google Scholar
Kobine, J. J. 1995 Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech. 303, 233252.CrossRefGoogle Scholar
Koch, S., Harlander, U., Egbers, C. & Hollerbach, R. 2013 Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dyn. Res. 45 (3), 035504.Google Scholar
Kong, D., Cui, Z., Liao, X. & Zhang, K. 2015 On the transition from the laminar to disordered flow in a precessing spherical-like cylinder. Geophys. Astrophys. Fluid 109 (1), 6283.Google Scholar
Kong, D., Liao, X. & Zhang, K. 2014 The sidewall-localized mode in a resonant precessing cylinder. Phys. Fluids 26 (5), 051703.Google Scholar
van de Konijnenberg, J. A., Nielsen, A. H., Juul Rasmussen, J. & Stenum, B. 1999 Shear-flow instability in a rotating fluid. J. Fluid Mech. 387, 177204.Google Scholar
Le Gal, P., Nadim, A. & Thompson, M. 2001 Hysteresis in the forced Stuart–Landau equation: application to vortex shedding from an oscillating cylinder. J. Fluids Struct. 15 (3), 445457.Google Scholar
Lopez, J. M. & Marques, F. 2010 Sidewall boundary layer instabilities in a rapidly rotating cylinder driven by a differentially corotating lid. Phys. Fluids 22 (11), 114109.Google Scholar
Lopez, J. M. & Marques, F. 2011 Instabilities and inertial waves generated in a librating cylinder. J. Fluid Mech. 687, 171193.CrossRefGoogle Scholar
Lopez, J. M. & Marques, F. 2014 Rapidly rotating cylinder flow with an oscillating sidewall. Phys. Rev. E 89 (1), 013013.Google Scholar
Luz, D., Berry, D. L., Piccioni, G., Drossart, P., Politi, R., Wilson, C. F., Erard, S. & Nuccilli, F. 2011 Venus’s southern polar vortex reveals precessing circulation. Science 332 (6029), 577580.Google Scholar
Manasseh, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech. 243, 261296.Google Scholar
Meunier, P., Eloy, C., Lagrange, R. & Nadal, F. 2008 A rotating fluid cylinder subject to weak precession. J. Fluid Mech. 599, 405440.Google Scholar
Montabone, L., Wordsworth, R., Aguiar, A. C. B., Jacoby, T., Manfrin, M., Read, P. L., Castrejon-Pita, A., Gostiaux, L., Sommeria, J., Viboud, S. & Didelle, H. 2010 Barotropic instability of planetary polar vortices: CIV analysis of specific multi-lobed structures. In Proceedings of the HYDRALAB III Joint Transnational Access User Meeting, Hannover. Hydralab III.Google Scholar
Neild, A., Ng, T. W., Sheard, G. J., Powers, M. & Oberti, S. 2010 Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbations. Sensors Actuators B 150 (2), 811818.Google Scholar
Niino, H. & Misawa, N. 1984 An experimental and theoretical study of barotropic instability. J. Atmos. Sci. 41 (12), 19922011.2.0.CO;2>CrossRefGoogle Scholar
Noir, J., Calkins, M. A., Lasbleis, M., Cantwell, J. & Aurnou, J. M. 2010 Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet. Inter. 182 (1), 98106.Google Scholar
Noir, J., Jault, D. & Cardin, P. 2001 Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech. 437, 283299.CrossRefGoogle Scholar
Piccioni, G., Drossart, P., Sanchez-Lavega, A., Hueso, R., Taylor, F. W., Wilson, C. F., Grassi, D., Zasova, L., Moriconi, M., Adriani, A., Lebonnois, S., Coradini, A., Bezard, B., Angrilli, F., Arnold, G., Baines, K. H., Bellucci, G., Benkhoff, J., Bibring, J. P., Blanco, A., Blecka, M. I., Carlson, R. W., Di Lellis, A., Encrenaz, T., Erard, S., Fonti, S., Formisano, V., Fouchet, T., Garcia, R., Haus, R., Helbert, J., Ignatiev, N. I., Irwin, P. G. J., Langevin, Y., Lopez-Valverde, M. A., Luz, D., Marinangeli, L., Orofino, V., Rodin, A. V., Roos-Serote, M. C., Saggin, B., Stam, D. M., Titov, D., Visconti, G., Zambelli, M.& the VIRTIS-Venus Express Technical Team 2007 South-polar features on Venus similar to those near the north pole. Nature 450 (7170), 637640.Google Scholar
Plougonven, R. & Zhang, F. 2014 Internal gravity waves from atmospheric jets and fronts. Rev. Geophys. 52 (1), 3376.Google Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kárman instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Rabaud, M. & Couder, Y. 1983 Shear-flow instability in a circular geometry. J. Fluid Mech. 136, 291319.Google Scholar
Sauret, A., Cébron, D., Le Bars, M. & Le Dizès, S. 2012 Fluid flows in a librating cylinder. Phys. Fluids 24 (2), 026603.Google Scholar
Schaeffer, N. & Cardin, P. 2005 Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 17, 104111.Google Scholar
Sheard, G. J. & King, M. P. 2011 Horizontal convection: effect of aspect ratio on Rayleigh number scaling and stability. Appl. Math. Model. 35 (4), 16471655.Google Scholar
Sheard, G. J. & Ryan, K. 2007 Pressure-driven flow past spheres moving in a circular tube. J. Fluid Mech. 592, 233262.Google Scholar
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004a Asymmetric structure and nonlinear transition behaviour of the wakes of toroidal bodies. Eur. J. Mech. B 23 (1), 167179.Google Scholar
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004b From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 4578.Google Scholar
Smith, S. H. 1984 The development of nonlinearities in the $E^{1/3}$ Stewartson layer. Q. J. Mech. Appl. Maths 37 (1), 7585.Google Scholar
Snyder, C., Muraki, D. J., Plougonven, R. & Zhang, F. 2007 Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci. 64 (12), 44174431.Google Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.CrossRefGoogle Scholar
Taylor, F. W., Beer, R., Chahine, M. T., Diner, D. J., Elson, L. S., Haskins, R. D., McCleese, D. J., Martonchik, J. V., Reichley, P. E., Bradley, S. P., Delderfield, J., Schofield, J. T., Farmer, C. B., Froidevaux, L., Leung, J., Coffey, M. T. & Gille, J. C. 1980 Structure and meteorology of the middle atmosphere of Venus: infrared remote sensing from the Pioneer Orbiter. J. Geophys. Res. 85 (A13), 79638006.Google Scholar
Taylor, F. W., Diner, D. J., Elson, L. S., McCleese, D. J., Martonchik, J. V., Delderfield, J., Bradley, S. P., Schofield, J. T., Gille, J. C. & Coffey, M. T. 1979 Temperature, cloud structure, and dynamics of Venus middle atmosphere by infrared remote sensing from Pioneer Orbiter. Science 205 (4401), 6567.Google Scholar
Thompson, M. C. & Le Gal, P. 2004 The Stuart–Landau model applied to wake transition revisited. Eur. J. Mech. B 23 (1), 219228.Google Scholar
Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. 2012 Precessional states in a laboratory model of the Earth’s core. J. Geophys. Res. 117, B04103.Google Scholar
Viúdez, Á. & Dritschel, D. G. 2006 Spontaneous generation of inertia–gravity wave packets by balanced geophysical flows. J. Fluid Mech. 553, 107117.Google Scholar
Vo, T., Montabone, L. & Sheard, G. J. 2014 Linear stability analysis of a shear layer induced by differential coaxial rotation within a cylindrical enclosure. J. Fluid Mech. 738, 299334.Google Scholar
Vo, T., Montabone, L. & Sheard, G. J. 2015 Effect of enclosure height on the structure and stability of shear layers induced by differential rotation. J. Fluid Mech. 765, 4581.Google Scholar
Wang, S., Zhang, F. & Snyder, C. 2009 Generation and propagation of inertia–gravity waves from vortex dipoles and jets. J. Atmos. Sci. 66 (5), 12941314.Google Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2004 Stochastic resonance in a nonlinear model of a rotating, stratified shear flow, with a simple stochastic inertia–gravity wave parameterization. Nonlinear Process. Geophys. 11 (1), 127135.Google Scholar
Williams, P. D., Read, P. L. & Haine, T. W. N. 2003 Spontaneous generation and impact of inertia–gravity waves in a stratified, two-layer shear flow. Geophys. Res. Lett. 30 (24), 2255.Google Scholar