Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Soderlund, Krista M.
Sheyko, Andrey
King, Eric M.
and
Aurnou, Jonathan M.
2015.
The competition between Lorentz and Coriolis forces in planetary dynamos.
Progress in Earth and Planetary Science,
Vol. 2,
Issue. 1,
Aurnou, J.M.
Calkins, M.A.
Cheng, J.S.
Julien, K.
King, E.M.
Nieves, D.
Soderlund, K.M.
and
Stellmach, S.
2015.
Rotating convective turbulence in Earth and planetary cores.
Physics of the Earth and Planetary Interiors,
Vol. 246,
Issue. ,
p.
52.
Cheng, J.S.
and
Aurnou, J.M.
2016.
Tests of diffusion-free scaling behaviors in numerical dynamo datasets.
Earth and Planetary Science Letters,
Vol. 436,
Issue. ,
p.
121.
Yadav, Rakesh K.
Gastine, Thomas
Christensen, Ulrich R.
Wolk, Scott J.
and
Poppenhaeger, Katja
2016.
Approaching a realistic force balance in geodynamo simulations.
Proceedings of the National Academy of Sciences,
Vol. 113,
Issue. 43,
p.
12065.
Calkins, Michael A.
Julien, Keith
Tobias, Steven M.
Aurnou, Jonathan M.
and
Marti, Philippe
2016.
Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers: Single mode solutions.
Physical Review E,
Vol. 93,
Issue. 2,
Seshasayanan, K.
and
Alexakis, A.
2016.
Turbulent 2.5-dimensional dynamos.
Journal of Fluid Mechanics,
Vol. 799,
Issue. ,
p.
246.
Calkins, Michael A.
Long, Louie
Nieves, David
Julien, Keith
and
Tobias, Steven M.
2016.
Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers.
Physical Review Fluids,
Vol. 1,
Issue. 8,
Aubert, Julien
Gastine, Thomas
and
Fournier, Alexandre
2017.
Spherical convective dynamos in the rapidly rotating asymptotic regime.
Journal of Fluid Mechanics,
Vol. 813,
Issue. ,
p.
558.
Vreugdenhil, Catherine A.
Griffiths, Ross W.
and
Gayen, Bishakhdatta
2017.
Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux.
Journal of Fluid Mechanics,
Vol. 823,
Issue. ,
p.
57.
Maffei, S.
and
Jackson, A.
2017.
Kinematic validation of a quasi-geostrophic model for the fast dynamics in the Earth’s outer core.
Geophysical Journal International,
Vol. 210,
Issue. 3,
p.
1772.
Starchenko, S. V.
2017.
Energy geodynamo parameters compatible with analytical, numerical, paleomagnetic models and observations.
Izvestiya, Physics of the Solid Earth,
Vol. 53,
Issue. 6,
p.
908.
Aurnou, J. M.
and
King, E. M.
2017.
The cross-over to magnetostrophic convection in planetary dynamo systems.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol. 473,
Issue. 2199,
p.
20160731.
Calkins, Michael A.
Julien, Keith
and
Tobias, Steven M.
2017.
Inertia-less convectively-driven dynamo models in the limit of low Rossby number and large Prandtl number.
Physics of the Earth and Planetary Interiors,
Vol. 266,
Issue. ,
p.
54.
Földes, Juraj
Friedlander, Susan
Glatt-Holtz, Nathan
and
Richards, Geordie
2017.
Asymptotic Analysis for Randomly Forced MHD.
SIAM Journal on Mathematical Analysis,
Vol. 49,
Issue. 6,
p.
4440.
Chertovskih, R.
Rempel, E.L.
and
Chimanski, E.V.
2017.
Magnetic field generation by intermittent convection.
Physics Letters A,
Vol. 381,
Issue. 38,
p.
3300.
Ivers, D.J.
and
Phillips, C.G.
2018.
Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth’s core.
Physics of the Earth and Planetary Interiors,
Vol. 276,
Issue. ,
p.
44.
Plumley, Meredith
Calkins, Michael A.
Julien, Keith
and
Tobias, Steven M.
2018.
Self-consistent single mode investigations of the quasi-geostrophic convection-driven dynamo model.
Journal of Plasma Physics,
Vol. 84,
Issue. 4,
Calkins, Michael A.
2018.
Quasi-geostrophic dynamo theory.
Physics of the Earth and Planetary Interiors,
Vol. 276,
Issue. ,
p.
182.
Aurnou, Jonathan M.
Bertin, Vincent
Grannan, Alexander M.
Horn, Susanne
and
Vogt, Tobias
2018.
Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns.
Journal of Fluid Mechanics,
Vol. 846,
Issue. ,
p.
846.
Cao, Hao
Yadav, Rakesh K.
and
Aurnou, Jonathan M.
2018.
Geomagnetic polar minima do not arise from steady meridional circulation.
Proceedings of the National Academy of Sciences,
Vol. 115,
Issue. 44,
p.
11186.