Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T01:20:25.247Z Has data issue: false hasContentIssue false

Model problems for the tear film in a blink cycle: single-equation models

Published online by Cambridge University Press:  14 August 2007

R. J. BRAUN
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19711, USA
P. E. KING-SMITH
Affiliation:
College of Optometry, The Ohio State University, Columbus, OH 43218-2342, USA

Abstract

We consider model problems for the tear film over multiple blink cycles in limits that yield a single equation for the tear film; the single nonlinear partial differential equation that governs the film thickness arises from lubrication theory. The two models arise from considering the absence of naturally occurring surfactant and the case when the surfactant strongly affects the surface tension. The film is considered on a sinusoidally varying domain length with specified film thickness and volume flux at each end; only one end of the domain is moving, which is analogous to the upper eyelid moving with each blink. A main contribution of this article is computation of solutions for multiple complete blink cycles; the results of these non-trivial computations show a distinct similarity to quantitative in vivo observations of the tear film under partial blink conditions. A transition between periodic and non-periodic solutions has been estimated and this may be a criterion for what is effectively a full blink according to fluid dynamic considerations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, R. E. & Corrsin, S. 1974 A surface tension gradient mechanism for driving the pre-corneal tear film after a blink. J. Biomech. 7, 225238.Google Scholar
Beris, A., Armstrong, R. C. & Brown, R. A. 1983 Perturbation theory for viscoelastic fluids between eccentric rotating cylinders. J. Non-Newtonian Fluid Mech. 13, 109148.CrossRefGoogle Scholar
Berke, A. & Mueller, S. 1996 Einfluss des lidschlages auf die kontaktlinse und die zugrun- deliegenden kräfte. Die Kontaktlinse 1, 1726.Google Scholar
Berke, A. & Mueller, S. 1998 The kinetics of lid motion and its effects on the tear film. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2 (ed. Sullivan, D. A., Dartt, D. A. & Meneray, M. A.), pp. 417424. Plenum.CrossRefGoogle Scholar
Bitton, E. & Lovasik, J. V. 1998 Longitudinal analysis of precorneal tear film rupture patterns. In Lacrimal Gland, Tear Film and Dry Eye Syndromes 2 (ed. Sullivan, D. A., Dartt, D. A. & Meneray, M. A.), pp. 381389. Plenum.Google Scholar
Braun, R. J. 2006 Models for human tear film dynamics. In Wave Dynamics and Thin Film Flow Systems (ed. Usha, R., Sharma, A. & Dandapat, B. S.), pp. 404434. Narosa.Google Scholar
Braun, R. J. & Fitt, A. D. 2003 Modelling drainage of the precorneal tear film after a blink. Math. Med. Bio. 20, 128.CrossRefGoogle ScholarPubMed
Brenan, K. E., Campbell, S. L. & Petzold, L. R. 1996 Numerical Solution of Initial-Value Problems in Differential Algebraic Equations. SIAM.Google Scholar
Bron, A. J., Tiffany, J. M., Gouveia, S. M., Yokoi, N. & Voon, L. W. 2004 Functional aspects of the tear film lipid layer. Expl Eye Res. 78, 347360.CrossRefGoogle ScholarPubMed
Chen, H.-B., Yamabayashi, S., Ou, B., Tanaka, Y. & Ohno, S. 1997 Structure and composition of rat precorneal tear film: A study by in vivo cryofixation. Invest. Ophthalmol. Vis. Sci. 38, 381387.Google Scholar
Creech, J. L., Do, L. T., Fatt, I. & Radke, C. J. 1998 In vivo tear-film thickness determination and implications for tear-film stability. Curr. Eye Res. 17, 10581066.CrossRefGoogle ScholarPubMed
Doane, M. G. 1980 Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am. J. Ophthalmol. 89, 507516.Google Scholar
Doane, M. G. 1981 Blinking and the mechanics of the lacrimal drainage system. Ophthalmol. 88, 844–51.Google Scholar
Doane, M. G. 1989 An instrument for in vivo tear film interferometry. Optom. Vis. Sci. 66, 383388.CrossRefGoogle ScholarPubMed
Ehlers, N. 1965 The precorneal film: Biomicroscopical, histological and chemical investigations. Acta Ophthalmol. Suppl. 81, 3135.Google Scholar
Fatt, I. & Weissman, B. A. 1992 Physiology of the Eye – An introduction to the Vegetative Functions, 2nd edn. Butterworth-Heinemann.Google Scholar
Fogt, N., King-Smith, P. E. & Tuell, G. 1998 Interferometric measurement of tear film thickness by use of spectal oscillations J. Opt. Soc. Am. A 15, 268275.CrossRefGoogle Scholar
Gipson, I. K. 2004 Distribution of mucins at the ocular surface. Expl Eye Res. 78, 379388.CrossRefGoogle ScholarPubMed
Heryudono, A., Braun, R. J., Driscoll, T. A., Cook, L. P. & King-Smith, P. E. 2007 Single-equation models for the tear film in a blink cycle: Realistic lid motion. Submitted.CrossRefGoogle Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of a steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.Google Scholar
Jones, M. B., McElwain, D. L. S., Fulford, G. R., Collins, M. J. & Roberts, A. P. 2006 The effect of the lipid layer on tear film behavior. Bull. Math. Bio. 68, 13551381.Google Scholar
Jones, M. B., Please, C. P., McElwain, D. L. S., Fulford, G. R., Roberts, A. P. & Collins, M. J. 2005 Dynamics of tear film deposition and draining. Math. Med. Bio. 22, 265288.Google Scholar
King-Smith, P. E., Fink, B. A., Fogt, N., Nichols, K. K., Hill, R. M. & Wilson, G. S. 2000 The thickness of the human precorneal tear film: Evidence from reflection spectra. Invest. Ophthalmol. Vis. Sci. 41, 33483359.Google ScholarPubMed
King-Smith, P. E., Fink, B. A., Hill, R. M., Koelling, K. W. & Tiffany, J. M. 2004 The thickness of the tear film. Curr. Eye Res. 29, 357368.CrossRefGoogle ScholarPubMed
King-Smith, P. E., Fink, B. A., Hill, R. M., Koelling, K. W. & Tiffany, J. M. 2005 Reply to letter by Dr. C. J. Radke. Curr. Eye Res. 30, 11331134.CrossRefGoogle Scholar
King-Smith, P. E., Fink, B. A., Nichols, J. J., Nichols, K. K. & Hill, R. M. 2006 The thickness of the human precorneal tear film: Evidence from reflection spectra J. Opt. Soc. Am. A 23, 20972104.Google Scholar
Korb, D. R. & Herman, J. P. 1979 Corneal staining subsequent to sequential fluorescein instillations. J. Am. Optom. Assoc. 50, 361367.Google ScholarPubMed
Lee, A. G., Shaqfeh, E. S. G. & Khomami, B. 2002 A study of viscoelastic free surface flows by the finite element method: Hele-shaw and slot coating flows. J. Non-Newtonian Fluid Mech. 108, 327362.CrossRefGoogle Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Wiley.Google Scholar
McCulley, J. P. & Shine, W. 1997 A compositional based model for the tear film lipid layer. Trans. Am. Ophth. Soc. XCV, 7993.Google Scholar
McDonald, J. E. & Brubaker, S. 1971 Meniscus-induced thinning of tear films. Am. J. Ophthalmol. 72, 139146.CrossRefGoogle ScholarPubMed
Miller, K. L., Polse, K. A. & Radke, C. J. 2003 On the formation of the black line. Curr. Eye Res. 25, 155162.CrossRefGoogle Scholar
Mishima, S. 1965 Some physiological aspects of the precorneal tear film. Arch. Ophthalmol. 73, 233241.CrossRefGoogle ScholarPubMed
Myers, T. G. 2005 Application of non-Newtonian models to thin film flow. Phys. Rev. E 72, 066302.Google Scholar
Nichols, J. J. & King-Smith, P. E. 2003 Thickness of the pre- and post-contact lens tear film measured in vivo by interferometry. Invest. Ophthalmol. Vis. Sci. 44, 6877.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Owens, H. & Phillips, J. 2001 Spread of the tears after a blink: Velocity and stabilization time in healthy eyes. Cornea 20, 484487.Google Scholar
Pandit, J. C., Nagyová, B., Bron, A. J. & Tiffany, J. M. 1999 Physical properties of stimulated and unstimulated tears. Expl Eye Res. 68, 247253.Google Scholar
Pasquali, M. & Scriven, L. E. 2002 Free surface flows of polymer solutions with models based on the conformation tensor. J. Non-Newtonian Fluid Mech. 108, 363409.Google Scholar
Probstein, R. F. 1994 Physicochemical Hydrodynamics. Wiley.CrossRefGoogle Scholar
Rolando, M. & Refojo, M. F. 1983 Tear evaporimeter for measuring water evaporation rate from the tear film under controlled conditions in humans. Expl Eye Res. 36, 2533.CrossRefGoogle ScholarPubMed
Sharma, A., Khanna, R. & Reiter, G. 1999 A thin film analog of the corneal mucus layer of the tear film: an enigmatic long range non-classical dlvo interaction in the breakup of thin polymer films Colloids Surf. B 14, 223235.CrossRefGoogle Scholar
Sharma, A., Tiwari, S., Khanna, R. & Tiffany, J. M. 1998 Hydrodynamics of meniscus-induced thinning of the tear film. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2 (ed. Sullivan, D. A., Dartt, D. A. & Meneray, M. A.), pp. 425431. Plenum.CrossRefGoogle Scholar
Tiffany, J. M. 1991 The viscosity of human tears. Intl Ophthalmol. 15, 371376.Google Scholar
Tiffany, J. M. 1994 Viscoelastic properties of human tears and polymer solutions. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes (ed. Sullivan, D. A.), pp. 267270. Plenum.CrossRefGoogle Scholar
Wang, J., Fonn, D., Simpson, T. L. & Jones, L. 2003 Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 44, 25242528.Google Scholar
Wong, H., Fatt, I. & Radke, C. J. 1996 Deposition and thinning of the human tear film. J. Colloid Interface Sci. 184, 4451.CrossRefGoogle ScholarPubMed
Zhang, L., Matar, O. K. & Craster, R. 2003 a Analysis of tear film rupture: Effect of non-Newtonian rheology J. Colloid Interface Sci. 262, 130148.Google Scholar
Zhang, L., Matar, O. K. & Craster, R. 2003 b Surfactant driven flows overlying a hydrophobic epithelium: film rupture in the presence of slip J. Colloid Interface Sci. 264, 160175.CrossRefGoogle ScholarPubMed
Zhang, R. & Li, X. K. 2005 Non-Newtonian effects on lubricant thin film flows. J. Engng Maths 51, 113.CrossRefGoogle Scholar