Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-17T20:04:22.175Z Has data issue: false hasContentIssue false

The mechanisms underlying flow-induced instabilities of cylinder arrays in crossflow

Published online by Cambridge University Press:  21 April 2006

M. P. Paiudoussis
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, Québec, H3A 2K6 Canada
S. J. Price
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, Québec, H3A 2K6 Canada

Abstract

This paper aims to shed some light on the physical mechanisms involved in flowinduced instabilities of arrays of cylinders in crossflow. In the framework of quasi-steady fluid-dynamic theory, two distinct mechanisms are discussed. The first is similar but not identical to that associated with classical galloping; i.e. it is a negative fluid-dynamic damping mechanism and may obtain even if a single cylinder in the array is free to oscillate with only one degree of freedom. Unlike classical galloping, it is intimately related to the time delay experienced in the wake structure, and hence the fluid forces, adjusting to displacements of the cylinder. The second mechanism is similar to wake flutter; i.e. it is controlled by non-conservative fluid-dynamic stiffness effects and generally requires relative motion between adjacent cylinders in the array, although there is no reason why it should not occur for a single flexible cylinder with two degrees of freedom. The two mechanisms generally coexist, but each is predominant over different ranges of system parameters.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisplinghoff, R. L., Ashley, H. & Halfman, R. L. 1955 Aeroelasticity. Addison-Wesley.
Blevins, R. D. 1974 Trans. ASME J: J. Pressure Vessel Tech. 96, 263.Google Scholar
Blevins, R. D. 1977a Trans. ASME I: J. Fluids Engng 99, 457.Google Scholar
Blevins, R. D. 1977b Flow-Induced Vibration. Van Nostrand-Reinhold.
Chen, S. S. 1983a Trans. ASME J. Vib. Acoust. Stress & Reliab. Design 105, 51.
Chen, S. S. 1983b Trans. ASME J. Vib. Acoust. Stress & Reliab. Design 105, 253.
Chen, S. S. 1987 J. Fluids Struct. 1, 35.
Connors, H. J. 1970 In Flow-Induced Vibration in Heat Exchangers (ed. D. D. Reiff), p. 42. ASME.
Den Hartog, J. P. 1932 Trans. AIEE 51, 1074.
Den Hartog, J. P. 1956 Mechanical Vibrations, 4th edn, § 7.5. McGraw-Hill.
Ericsson, L. E. & Reding, J. P. 1988 J. Fluids Struct. 2 (in the Press).
Lever, J. H. & Weaver, D. S. 1982 Trans. ASME J: J. Pressure Vessel Tech. 104, 147.Google Scholar
Lever, J. H. & Weaver, D. S. 1986a J. Sound Vib. 107, 375.
Lever, J. H. & Weaver, D. S. 1986b J. Sound Vib. 107, 393.
Nakamura, Y. 1978 J. Sound Vib. 57, 471.
Païdoussis, M. P. 1980 In Practical Experiences with Flow-Induced Vibrations (ed. E. Naudascher & D. Rockwell), p. 1. Springer.
Païdoussis, M. P. 1981 J. Sound Vib. 76, 329.
Païdoussis, M. P. 1983 Nucl. Engng & Design 74, 31.
Païdoussis, M. P. 1987 Appl. Mech. Reviews 40, 163.
Païdoussis, M. P., Mavriplis, D. & Price, S. J. 1984 J. Fluid Mech. 146, 227.
Païdoussis, M. P., Price, S. J. & Mavriplis, D. 1985 Trans. ASME I: J. Fluids Engng 107, 500.Google Scholar
Price, S. J. 1975 J. Sound Vib. 38, 125.
Price, S. J. & Païdoussis, M. P. 1984 J. Sound Vib. 97, 615.
Price, S. J. & Païdoussis, M. P. 1986a J. Sound Vib. 105, 121.
Price, S. J. & Païdoussis, M. P. 1986b Trans. ASME I: J. Fluids Engng 108, 193.Google Scholar
Price, S. J. & Piperni, P. 1986 In Flow-Induced Vibration (ed. S. S. Chen, J. C. Simonis & Y. S. Shin), p. 127, ASME. Also 1988 J. Fluids Struct. 2 (in the Press).
Roberts, B. W. 1966 Mech. Engng Sci. Monograph no. 4. I. Mech. E.
Simpson, A. 1971 Aero. Q. 23, 101.
Simpson, A. & Flower, J. W. 1977 J. Sound Vib. 51, 183.
Tanaka, H. & Takahara, S. 1981 J. Sound Vib. 77, 19.