Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T17:42:39.394Z Has data issue: false hasContentIssue false

The measurement of growth rates in capillary jets

Published online by Cambridge University Press:  25 January 2009

H. GONZÁLEZ*
Affiliation:
Departamento de Física Aplicada III, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n 41092 Sevilla, Spain Group of Electrohydrodynamics and Cohesive Granular Media, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes, s/n, 41012 Sevilla, Spain
F. J. GARCÍA
Affiliation:
Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Avenida Reina Mercedes, s/n, 41012 Sevilla, Spain Group of Electrohydrodynamics and Cohesive Granular Media, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes, s/n, 41012 Sevilla, Spain
*
Email address for correspondence: [email protected]

Abstract

The growth of perturbations on a capillary jet issuing from a circular nozzle in the Rayleigh regime is experimentally investigated. Electrohydrodynamic sinusoidal stimulation is employed to this end, along with two independent methods to obtain growth rates of the linear regime with the best accuracy so far. The first method exploits the correlation between the stimulation voltage and the breakup time measured with the help of stroboscopic images of the jet. The second method is an analysis of the spatial evolution of perturbations through a local jet-shadow-width photometry, with careful avoidance of the initial transient and the final nonlinear stages. Experiments conducted with ink allow the application of both methods, as the liquid is opaque. They give consistent results, with very small statistical errors, with respect to the expected theoretical dispersion relation, once the dynamic surface tension is adjusted. The adjusted value is in accordance with an estimate made from drop-dynamics experiments also reported here. By dealing with a simpler liquid (aqueous solution of NaNO3), we are able to compare results from the first method against the theoretical predictions without adjustment of any parameter. The agreement is again excellent. Possible sources of systematic errors in this kind of measurements are identified and procedures for avoiding them are designed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alakoç, U., Megaridis, C. M., McNallan, M. & Wallace, D. B. 2004 Dynamic surface tension measurements with submillisecond resolution using a capillary-jet instability technique. J. Colloid Interface Sci. 276, 379391.CrossRefGoogle ScholarPubMed
Ashgriz, N. & Mashayek, F. 1995 Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163190.CrossRefGoogle Scholar
Attané, P. 2006 Response to “Comment on ‘Breakup length of forced liquid jet.’” Phys. Fluids 18, 019102.CrossRefGoogle Scholar
Atten, P., Fressard, D., Barbet, B. & Bardeau, C. 1995 Electrohydrodynamic induction of isolated drops in a jet. In Ninth International Conference on Electrostatics, 1995, Institute of Physics Conf. Ser. 143, York, pp. 47–50.Google Scholar
Barbet, B. 1997 Stimulation Électrohydrodynamique et thermique de jets de liquide conducteur. PhD thesis, Université Joseph Fourier, Grenoble 1, France.Google Scholar
Basaran, O. A. 1992 Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169198.CrossRefGoogle Scholar
Bechtel, S. E., Koelling, K. W., Nguyen, W. & Tan, G. 2002 A new technique for the measurement of the dynamic evolution of surface tension. J. Colloid Interface Sci. 245, 142162.CrossRefGoogle ScholarPubMed
Bohr, N. 1909 Determination of the surface tension of water by the method of jet vibration. Phil. Trans. Roy. Soc. A 209, 281317.Google Scholar
Bruce, C. A. 1976 Dependence of ink jet dynamics on fluid characteristics. IBM J. Res. Dev. 1, 258270.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Chaudhary, K. C. & Maxworthy, T. 1980 The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behaviour before droplet formation. J. Fluid Mech. 96, 275298.CrossRefGoogle Scholar
Chauhan, A., Maldarelly, C., Rumschitzki, D. S. & Papageorgiou, D. 2003 An experimental investigation of convective instability in a jet. Chem. Engng Sci. 58 (11), 24212432.CrossRefGoogle Scholar
Cheong, B. S. & Howes, T. 2004 Capillary jet instability under the influence of gravity. Chem. Engng Sci. 59, 21452157.CrossRefGoogle Scholar
Cline, H. E. & Anthony, T. R. 1978 The effect of harmonics on the capillary instability of liquid jets. J. Appl. Phys. 49, 32033208.CrossRefGoogle Scholar
Collicott, S. H., Zhang, S. & Schneider, S. P. 1994 Quantitative liquid jet instability measurement system using asymmetric magnification and digital image processing. Exp. Fluids 16 (5), 345348.CrossRefGoogle Scholar
Crowley, J. M. 1983 Electrohydrodynamic droplet generators. J. Electrost. 14, 121134.CrossRefGoogle Scholar
Donnelly, R. J. & Glaberson, W. 1965 Experiments on the capillary instability of a liquid jet. Proc. Roy. Soc. Lond. A 290, 546566.Google Scholar
Dressler, J. L. 1998 High-order azimuthal instabilities on a cylindrical liquid jet driven by temporal and spatial perturbations. Phys. Fluids 10 (9), 22122227.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865929.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 179.CrossRefGoogle Scholar
García, F. J., Castellanos, A., Atten, P. & Barbet, B. 2000 Nonlinear one-dimensional modelling of the deformation and break-up of a conducting liquid jet under intermittent EHD stimulation. In Second International Workshop on EHD and Breakdown, Grenoble, France, pp. 158161.Google Scholar
García, F. J. & González, H. 2008 Normal-mode linear analysis and initial conditions of capillary jets. J. Fluid Mech. 602, 81117.CrossRefGoogle Scholar
Gavis, J. & Modan, M. 1967 Expansion and contraction of jets of Newtonian liquids in air: effect of tube length. Phys. Fluids 10 (3), 487497.CrossRefGoogle Scholar
Goedde, E. F. & Yuen, M. C. 1970 Experiments on liquid jet instability. J. Fluid Mech. 40, 495511.CrossRefGoogle Scholar
González, H. & García, F. J. 2006 Comment on “Breakup length of forced liquid jets” [Phys. Fluids 15, 2469 (2003)]. Phys. Fluids 18, 1–2, 019101.Google Scholar
González, H., García, F. J. & Castellanos, A. 2003 Stability analysis of conducting jets under AC radial electric fields for arbitrary viscosity. Phys. Fluids 15 (2), 395407.CrossRefGoogle Scholar
Gordillo, J. M. & Pérez-Saborid, M. 2005 Aerodynamic effects in the break-up of liquid jets: on the first wind-induced break-up regime. J. Fluid Mech. 541, 120.CrossRefGoogle Scholar
Hrdina, D. W. & Crowley, J. M. 1989 Drop-on-demand operation of continuous jets using EHD techniques. IEEE Trans. Ind. Appl. 25 (4)705710.CrossRefGoogle Scholar
Kalaaji, A., Lopez, B., Attané, P. & Soucemarianadin, A. 2003 Breakup length of forced liquid jets. Phys. Fluids 15 (9), 24692479.CrossRefGoogle Scholar
Keller, J. B., Rubinow, S. I. & Tu, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16 (12), 20522055.CrossRefGoogle Scholar
Kowalewski, T. A. 1996 On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17, 121145.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Leib, S. J. & Goldstein, M. E. 1986 Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29 (4), 952954.CrossRefGoogle Scholar
Manneville, P. 1990 Dissipative Structures and Weak Turbulence. Academic Press.Google Scholar
Melcher, J. R. 1963 Field-Coupled Surface Waves. MIT Press.Google Scholar
Pimbley, W. T. & Lee, H. C. 1977 Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 2130.CrossRefGoogle Scholar
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
Rayleigh, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7179.Google Scholar
Rayleigh, L. 1892 On the instability of a cylinder of viscous liquid under capillary forces. Philos. Mag. 34, 145154.CrossRefGoogle Scholar
Ronay, M. 1978 a Determination of the dynamic surface tension of inks from the capillary instability of jets. J. Colloid Interface Sci. 66, 5567.CrossRefGoogle Scholar
Ronay, M. 1978 b Determination of the dynamic surface tension of liquids from the instability of excited capillary jets and from the oscillation frequency of drops issued from such jets. Proc. R. Soc. Lond. A 361, 181206.Google Scholar
Sarkar, T. K. & Pereira, O. 1995 Using the Matrix Pencil Method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Prop. Mag. 37 (1), 4855.CrossRefGoogle Scholar
Saville, D. A. 1971 Stability of electrically charged viscous cylinders. Phys. Fluids 14, 10951099.CrossRefGoogle Scholar
Scriven, L. E. & Pigford, R. L. 1959 Fluid dynamics and diffusion calculations for laminar liquid jets. AIChE J. 5, 397402.CrossRefGoogle Scholar
Sterling, A. M. & Sleicher, C. A. 1975 The instability of capillary jets. J. Fluid Mech. 68, 477495.CrossRefGoogle Scholar
Taub, H. H. 1976 Investigation of nonlinear waves on liquid jets. Phys. Fluids 19, 11241129.CrossRefGoogle Scholar
Washburn, E. W. 1926–1930; 2003. International Critical Tables of Numerical Data, Physics, Chemistry and Technology. Knovel.Google Scholar
Weber, C. 1931 Zum Zerfall eines Flüssigkeitsstrahles. Z. Angew. Math. Mech. 11, 136154.CrossRefGoogle Scholar
Wetsel, G. C. 1980 Capillary oscillations on liquid jets. J. Appl. Phys. 58, 35863592.CrossRefGoogle Scholar
Xing, J. H., Boguslawski, A., Soucemarianadin, A., Atten, P. & Attané, P. 1996 Experimental investigation of capillary instability: results on jet stimulated by pressure modulations. Exp. Fluids 20, 302313.CrossRefGoogle Scholar