Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T18:48:47.975Z Has data issue: false hasContentIssue false

Mean induction and diffusion: the influence of spatial coherence

Published online by Cambridge University Press:  25 May 2009

ALICE COURVOISIER*
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
DAVID W. HUGHES
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
STEVEN M. TOBIAS
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
*
Email address for correspondence: [email protected]

Abstract

Within the same framework we calculate the mean induction of a magnetic field and the mean diffusivity of a passive scalar, for two families of flows in which the degree of spatial decorrelation can be systematically adjusted. We investigate the dependence of these quantities both on the spatial decoherence and on the molecular diffusivity. We demonstrate that for flows with similar global properties, the mean induction is dramatically reduced as the flows become less spatially correlated; the mean diffusivity, on the other hand, shows no significant or systematic variation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biferale, L., Crisanti, A., Vergassola, M. & Vulpiani, A. 1995 Eddy diffusivities in scalar transport. Phys. Fluids 7, 27252734.CrossRefGoogle Scholar
Cattaneo, F. & Hughes, D. W. 2006 Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401418.CrossRefGoogle Scholar
Cattaneo, F. & Hughes, D. W. 2009 Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers. Mon. Not. R. Astr. Soc. 395, L48L51.CrossRefGoogle Scholar
Cattaneo, F., Hughes, D. W. & Proctor, M. R. E. 1988 Mean advection effects in turbulence. Geophys. Astrophys. Fluid Dyn. 41, 335342.CrossRefGoogle Scholar
Cattaneo, F. & Tobias, S. M. 2005 Interaction between dynamos at different scales. Phys. Fluids 17, 127105127111.CrossRefGoogle Scholar
Childress, S. & Gilbert, A. D. 1995 Stretch, Twist, Fold: The Fast Dynamo. Springer VerlagGoogle Scholar
Childress, S. & Soward, A. M. 1989 Scalar transport and α-effect for a family of cat's-eye flows. J. Fluid Mech. 205, 99133.CrossRefGoogle Scholar
Courvoisier, A. 2008 The α-effect in 2D fast dynamos. Geophys. Astrophys. Fluid Dyn. 102, 217243.CrossRefGoogle Scholar
Courvoisier, A., Gilbert, A. D. & Ponty, Y. 2005 Dynamo action in flows with cat's eyes. Geophys. Astrophys. Fluid Dyn. 99, 413429.CrossRefGoogle Scholar
Courvoisier, A., Hughes, D. W. & Tobias, S. M. 2006 α-effect in a family of chaotic flows. Phys. Rev. Lett. 96. Id 034503.CrossRefGoogle Scholar
Cowling, T. G. 1933 The magnetic field of sunspots. Mon. Not. R. Astr. Soc. 94, 3948.CrossRefGoogle Scholar
Diamond, P. H., Hughes, D. W. & Kim, E. 2005 Self-consistent mean field electrodynamics in two and three dimensions. In Fluid Dynamics and Dynamos in Astrophysics and Geophysics (ed. Soward, A. M., Jones, C. A., Hughes, D. W. & Weiss, N. O.), pp. 145192. CRC Press.Google Scholar
Galloway, D. J. & Proctor, M. R. E. 1992 Numerical calculations of fast dynamos for smooth velocity fields with realistic diffusion. Nature 356, 691693.CrossRefGoogle Scholar
Gieseke, A., Ziegler, U. & Rüdiger, G. 2005 Geodynamo α-effect derived from box simulations of rotating magnetoconvection. Phys. Earth Planet. Int. 152, 90102.CrossRefGoogle Scholar
Hughes, D. W. & Cattaneo, F. 2008 The α-effect in rotating convection: size matters. J. Fluid Mech. 594, 445461.CrossRefGoogle Scholar
Knobloch, E. 1977 The diffusion of scalar and vector fields by homogeneous stationary turbulence. J. Fluid Mech. 83, 129140.CrossRefGoogle Scholar
Kraichnan, R. H. 1976 Diffusion of passive scalar and magnetic fields by helical turbulence. J. Fluid Mech. 77, 753768.CrossRefGoogle Scholar
Krause, F. & Rädler, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. PergamonGoogle Scholar
Majda, A. J. & Kramer, P. R. 1999 Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237574.CrossRefGoogle Scholar
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Moffatt, H. K. 1983 Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Prog. Phys. 46, 621664.CrossRefGoogle Scholar
Ossendrijver, M., Stix, M. & Brandenburg, A. 2001 Magnetoconvection and dynamo coefficients: dependence of the α-effect on rotation and magnetic field. Astron. Astrophys. 376, 713726.CrossRefGoogle Scholar
Otani, N. F. 1993 A fast kinematic dynamo in time-dependent two-dimensional flows. J. Fluid Mech. 253, 327340.CrossRefGoogle Scholar
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press.Google Scholar
Plunian, F. & Rädler, K.-H. 2002 Harmonic and subharmonic solutions of the Roberts dynamo problem. Application to the Karlsruhe experiment. Magnetohydrodynamics 38, 92103.Google Scholar
Pouquet, A., Frisch, U. & Léorat, J. 1976 Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 88, 116.CrossRefGoogle Scholar
Rädler, K.-H. & Brandenburg, A. 2009 Mean-field effects in the Galloway-Proctor flow. Mon. Not. R. Astr. Soc. 393, 113125.CrossRefGoogle Scholar
Roberts, G. O. 1970 Spatially periodic dynamos. Phil. Trans. R. Soc. Lon. A 266, 535558.Google Scholar
Roberts, P. H. 1994 Fundamentals of dynamo theory. In Lectures on Solar and Planetary Dynamos (ed. Proctor, M. R. E. & Gilbert, A. D.), pp. 158. Cambridge University Press.Google Scholar
Sturman, R., Ottino, J. M. & Wiggins, S. 2006 Mathematical Foundations of Mixing: The Linked Twist Map as a Paradigm in Applications – Micro to Macro, Fluids to Solids. Cambridge University PressCrossRefGoogle Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lon. Math. Soc. A 20, 196211.Google Scholar
Zel'dovitch, Y. B. 1957 The magnetic field in the two-dimensional motion of a conductive fluid. Sov. Phys. JETP 4, 460462.Google Scholar