Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T15:17:36.711Z Has data issue: false hasContentIssue false

Mean fields and fluctuation moments in unstably stratified turbulent boundary layers

Published online by Cambridge University Press:  26 April 2006

B. A. Kader
Affiliation:
Institute of Atmospheric Physics, USSR Academy of Sciences, Moscow, USSR
A. M. Yaglom
Affiliation:
Institute of Atmospheric Physics, USSR Academy of Sciences, Moscow, USSR

Abstract

The earliest results concerning the turbulence structure in a turbulent boundary layer with very unstable thermal stratification are due to Prandtl (1932). These results were developed further and made more precise by Obukhov (1946, 1960), Monin & Obukhov (1954) and Priestley (1954, 1955, 1956, 1960). All of these authors dealt with a surface layer of the Earth's atmosphere on hot summer days. Such a layer is the most easily accessible example of an unstably stratified boundary layer and it will be the main concern in this paper too. The theoretical predictions by the above-mentioned authors seemed at first to be confirmed by the available experimental data but in the late 1960s it became clear that at least some of the predictions disagreed strongly with the experimental information.

A more elaborate theory was proposed by Betchov & Yaglom (1971) who used a suggestion of Zilitinkevich (1971). According to this theory, within an unstably stratified boundary layer there are three special sublayers where turbulence structure is self-preserving and obeys rather simple power laws. The new theory explained the disagreement between some of the deductions from the old theory and the data. However, the data available in 1971 were insufficient for the confirmation of the new theory and it was even supposed by Betchov & Yaglom (1971) that their theory could not be applied to atmospheric surface layers on hot summer days.

Much new experimental data concerning unstably stratified boundary layers has been obtained in recent years; in particular, extensive experimental information was collected during the summers of 1981–1987 at the Tsimlyansk Field Station of the Moscow Institute of Atmospheric Physics. This paper is a survey of the deductions from the theory by Betchov & Yaglom which concern the mean fields and the one-point fluctuation moments in unstably stratified boundary layers, and a comparison of these deductions with the data available in 1989. It is shown that the data agree more or less satisfactorily with the theoretical predictions and permit one to obtain estimates for a number of coefficients that enter the theoretical equations.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arya, S. P. S.: 1972 Free convection similarity and measurements in flows with and without shear. J. Atmos. Sci. 29, 877885.Google Scholar
Barenblatt, G. I.: 1980 Similarity, Self-Similarity and Intermediate Asymptotics. Plenum.
Batchelor, G. K.: 1950 The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Met. Soc. 76, 133146.Google Scholar
Batchelor, G. K.: 1952 Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proc. Camb. Phil. Soc. 48, 345362.Google Scholar
Batchelor, G. K.: 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K.: 1964 Diffusion from sources in a turbulent boundary layer. Arch. Mech. Stosowanej 16, 661670.Google Scholar
Bernstein, A. B.: 1966 A new dimensional approach to the problem of flux-gradient relationships near the ground. Q. J. R. Met. Soc. 92, 560566.Google Scholar
Betchov, R. & Yaglom, A. M., 1971 Comments on the theory of similarity as applied to turbulence in an unstably stratified fluid. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 7, 12701279 (829–832 in the Engl. transl. of the journal).Google Scholar
Binkowski, F. S.: 1979 A simple semi-empirical theory for turbulence in the atmospheric surface layer. Atmos. Environ. 13, 247253.Google Scholar
Bradley, E. F. & Antonia, R. A., 1979 Structure parameters in the atmospheric surface layer. Q. J. R. Met. Soc. 105, 695705.Google Scholar
Bradley, E. F., Antonia, R. A. & Chambers, A. J., 1981a Temperature structure in the atmospheric surface layer. 1. The budget of temperature variance. Boundary-Layer Met. 20, 275292.Google Scholar
Bradley, E. F., Antonia, R. A. & Chambers, A. J., 1981b Turbulence Reynolds number and the turbulent kinetic energy balance in the atmospheric surface layer. Boundary-Layer Met. 21, 183197.Google Scholar
Bradley, E. F., Antonia, R. A. & Chambers, A. J., 1982 Streamwise heat flux budget in the atmospheric surface layer. Boundary-Layer Met. 23, 315.Google Scholar
Businger, J. A.: 1973 Turbulent transfer in the atmospheric surface layer. In Workshop on Micrometeorology (ed. D. A. Haugen), pp. 67100. American Meteorological Society.
Businger, J. A., Wyngaard, J. C., Izumi, Y. & Bradley, F. F., 1971 Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181189.Google Scholar
Businger, J. A. & Yaglom, A. M., 1971 Introduction to Obukhov's paper on ‘Turbulence in an atmosphere with non-uniform temperature’. Boundary-Layer Met. 2, 36.Google Scholar
Calder, K. L.: 1967 A criticism of Bernstein's new dimensional approach to the flux-gradient relationships near the ground. Q. J. R. Met. Soc. 93, 544550.Google Scholar
Chiba, O.: 1978 Stability dependence of the vertical wind velocity skewness in the atmospheric surface layer. J. Met. Soc. Japan 56, 140142.Google Scholar
Donelan, M. & Miyake, M., 1973 Spectra and fluxes in the boundary layer of the trade-wind zone. J. Atmos. Sci. 30, 444464.Google Scholar
Dyer, A. J.: 1967 The turbulent transport of heat and water vapour in an unstable atmosphere. Q. J. R. Met. Soc. 93, 501508.Google Scholar
Dyer, A. J. & Bradley, E. F., 1982 An alternative analysis of flux-gradient relationships at the 1976 ITCE. Boundary-Layer Met. 22, 319.Google Scholar
Dyer, A. J., Garratt, J. R. & Francey, R. J., 1981 The international turbulence comparison experiment (Australia, 1976) – Central core data. CSIRO, Div. Atmos. Phys., Tech. Pap. 38.Google Scholar
Francey, R. J. & Garratt, J. R., 1981 Interpretation of flux-profile observations at ITCE (1976). J. Appl. Met. 20, 603618.Google Scholar
Garratt, J. R., Francey, R. J., McIlroy, I. C., Dyer, A. J., Helmond, I., Bradley, E. F. & Denman, O. T., 1979 The international turbulence comparison experiment (Australia. 1976) – Micrometerological support data. CSIRO, Div. Atmos. Phys., Tech. Pap. 37.Google Scholar
Haugen, D. A., Kaimal, J. C. & Bradley, E. F., 1971 An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Q. J. R. Met. Soc. 97, 168180.Google Scholar
Hayashi, M.: 1974 A preliminary study on the statistical characteristics of the atmospheric turbulence. J. Met. Soc. Japan II 52, 400406.Google Scholar
Hicks, B. B.: 1978 Some limitations of dimensional analysis and power laws. Boundary-Layer Met. 14, 567569.Google Scholar
Hicks, B. B.: 1981 An examination of turbulence statistics in the surface boundary layer. Boundary-Layer Met. 21, 389402.Google Scholar
Högström, U.: 1985 Von Kármán's constant in atmospheric boundary layer flows: reevaluated. J. Atmos. Sci. 42, 263270.Google Scholar
Högström, U.: 1988 Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Met. 42, 5578.Google Scholar
Hunt, J. C. R.: 1984 Turbulence structure in thermal convection and shear-free boundary layers. J. Fluid Mech. 138, 161184.Google Scholar
Huntley, H. E.: 1952 Dimensional Analysis. MacDonald (also Dover, 1966).
Isaacson, E. & Isaacson, M., 1975 Dimensional Methods in Engineering and Physics. Edward Arnold.
Izumi, Y.: 1971 Kansas 1968 field program data report. AFCRL-72–0041. Environ. Res. Papers 372. Air Force System Command.
Izumi, Y. & Caughev, J. S., 1976 Minnesota 1973 atmospheric boundary layer experiment data report. AFCRL-TR-76–0038. Environ. Res. Papers 547. Air Force Cambridge Res. Lab.
Kader, B. A.: 1987 Anisotropic wind velocity and temperature fluctuations in a neutrally stratified atmospheric surface layer. In Meteorological Researches no. 28 (ed. L. R. Tsvang & B. A. Kader), pp. 2635. Acad. Sci. USSR, Soviet Geophys. Committee (in Russian).
Kader, B. A.: 1988 Three-layer structure of an unstably stratified atmospheric surface layer. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 24, 12351250.Google Scholar
Kader, B. A. & Perepelkin, V. G., 1984 Wind velocity and temperature profiles in the atmospheric surface layer in neutral and unstable stratifications. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 20, 151161.Google Scholar
Kader, B. A. & Perepelkin, V. G., 1989 Effect of the unstable stratification on wind and temperature profiles in the surface layer. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 25, 787795.Google Scholar
Kader, B. A. & Yaglom, A. M., 1980 Similarity laws for turbulent wall flows. In Developments in Science and Technology, Ser. Mech. Liquid and Gas vol. 18, pp. 3111. Soviet Inst. of Sci. Eng. Inform., Moscow (in Russian).
Kader, B. A. & Yaglom, A. M., 1984 Turbulent structure of an unstable atmospheric surface layer. In Nonlinear and Turbulent Processes in Physics (ed. R. Z. Sagdeyev), vol. 2, pp. 829845. Harwood.
Kader, B. A. & Yaglom, A. M., 1987 Spectra of anisotropic velocity and temperature fluctuations in turbulent wall flows. In Problems of Turbulent Flows (ed. V. V. Struminsky), pp. 6574. Moscow: Nauka (Transl. Fluid Mech.-Sov. Res. 16 (6) 89–102, 1987).
Kader, B. A., Yaglom, A. M. & Zubkovskii, S. L., 1989 Spatial correlation functions of surface layer atmospheric turbulence at neutral stratification. Boundary-Layer Met. 47, 233249.Google Scholar
Kai, K.: 1982 The budget of turbulent energy measured at the ERC 30-m meteorological tower. J. Met. Soc. Japan II 60, 11171131.Google Scholar
Kerman, B. R.: 1978 Multi-component linear digital simulation of atmospheric boundary layer turbulence. Ind. Aerodyn. 3, 3959.Google Scholar
Kline, S. J.: 1986 Similitude and Approximation Theory. Springer.
Massey, B. S.: 1978 Directional analysis? Intl J. Mech. Eng. Educ. 6, 3336.Google Scholar
Monin, A. S. & Obukhov, A. M., 1954 Basic laws of turbulent mixing in the atmospheric mixing layer. Trudy Geofiz. Inst. Akad. Nauk SSSR no. 24 (151), 163187.Google Scholar
Monin, A. S. & Yaglom, A. M., 1971 Statistical Fluid Mechanics, vol. 1. MIT Press.
Monin, A. S. & Yaglom, A. M., 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.
Monji, N.: 1973 Budgets of turbulent energy and temperature variance in the transition zone from forced to free convection. J. Met. Soc. Japan II 15, 133145.Google Scholar
Monji, N.: 1975 Characteristics of the horizontal wind fluctuations in the surface layer under strong convective conditions. J. Met. Soc. Japan 53, 99102.Google Scholar
Mordukhovich, M. I. & Tsvang, L. R., 1966 Direct measurements of turbulent fluxes at two heights in atmospheric surface layer. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 2, 786803.Google Scholar
Obukhov, A. M.: 1946 Turbulence in thermally inhomogeneous atmosphere. Trudy Inst. Teor. Geofiz. Akad. Nauk SSSR no. 1, 95115 (Transl. in Boundary-Layer Met. 3, 7–29, 1971).Google Scholar
Obukhov, A. M.: 1960 Structure of temperature and velocity fields under conditions of free convection. Izv. Akad. Nauk SSSR, Ser. Geofiz. no. 9, 13921396.Google Scholar
Panofsky, H. A., Tennekes, H., Lenschow, D. A. & Wyngaard, J. C., 1977 The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Met. 11, 355361.Google Scholar
Panton, R. L.: 1984 Incompressible Flow. John Wiley.
Petukhov, B. S. & Polyakov, A. F., 1988 Heat Transfer in Turbulent Mixed Convection. Hemisphere.
Prandtl, L.: 1932 Meteorologische Anwendung der Strömungslehre. Beitr. Phys. fr. Atmos. 19, 188202.Google Scholar
Priestley, C. H. B.: 1954 Convection from a large horizontal surface. Austral. J. Phys. 7, 176201.Google Scholar
Priestley, C. H. B.: 1955 Free and forced convection in the atmosphere near the ground. Q. J. R. Met. Soc. 81, 139143.Google Scholar
Priestley, C. H. B.: 1956 Convection from the Earth's surface. Proc. R. Soc. Lond. A 238, 287304.Google Scholar
Priestley, C. H. B.: 1959 Turbulent Transfer in the Lower Atmosphere. Chicago University Press.
Priestley, C. H. B.: 1960 Temperature fluctuations in the atmospheric boundary layer. J. Fluid Mech. 7, 375384.Google Scholar
Rayment, R. & Caughey, S. J., 1977 An investigation of the turbulence equations in the atmospheric boundary layer. Boundary-Layer Met. 11, 1526.Google Scholar
Schacher, G. E., Davidson, K. L., Houlihan, T. & Fairall, C. W., 1981 Measurements of the rate of dissipation of turbulent kinetic energy, e, over the ocean. Boundary-Layer Met. 20, 321330.Google Scholar
Telford, J. W., Businger, J. A. & Högström, U. 1986 Comments on ‘Von Kármán's constant in atmospheric boundary layer flows: reevaluated’. J. Atmos. Sci. 43, 21272134.Google Scholar
Tennekes, H.: 1984 Similarity relations, scaling laws and spectral dynamics. In Atmospheric Turbulence and Air Pollution Modelling (ed. F. T. M. Nieuwstadt & H. van Dop), pp. 3668. Reidel.
Volkov, Y. A., Koprov, B. M. & Kravchenko, T. K., 1975 Vertical correlation functions of turbulent fields in the atmospheric surface layer. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 11, 794801.Google Scholar
Wesely, M. L.: 1974 Magnitudes of turbulent fluctuations in the atmospheric surface layer. In Symp. Atmos. Diff. and Air Polution, Santa Barbara, Calif., 1974, pp. 1518. Am. Met. Soc.
Williams, W.: 1892 On the relation of the dimensions of physical quantities in space, Phil. Mag. 34, 234271.Google Scholar
Wyngaard, J. C. & Coté, O. R. 1971 The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci. 28, 190201.Google Scholar
Wyngaard, J. C., Coté, O. R. & Izumi, Y. 1971 Local free convection, similarity and the budgets of shear stress and heat flux. J. Atmos. Sci. 28, 11711182.Google Scholar
Yaglom, A. M.: 1974 Data on turbulence characteristics in the atmospheric surface layer. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 10, 566586 (341–352 in English transl. of the journal).Google Scholar
Yaglom, A. M.: 1979 Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Ann. Rev. Fluid Mech. 11, 505540.Google Scholar
Yaglom, A. M.: 1981 Laws of small-scale turbulence in atmosphere and oceans. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 17, 12351257 (919–935 in English transl. of the journal).Google Scholar
Yasuda, N.: 1978 High-order equations of turbulence and characteristics of turbulence based on their simple solutions in the atmospheric boundary layer near the ground. Pap. Met. Geophys. 29, 109129.Google Scholar
Zhang, S. F., Oncley, S. P. & Businger, J. A., 1988 A critical evaluation of the von Kármán constant from a new atmospheric surface layer experiment. In Preprint Volume. Eighth Symp. on Turbulence and Diffusion. Am. Met. Soc., Boston, Mass.
Zilitinkevich, S. S.: 1971 On the turbulence and diffusion under free convection conditions. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 7, 12631269.Google Scholar
Zilitinkevich, S. S.: 1973 Shear convection. Boundary-Layer Met. 3, 416423.Google Scholar
Zubkovskii, S. L. & Tsvang, L. R., 1966 On the horizontal turbulent heat flux. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. i Okeana 2, 13071310.Google Scholar