Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T05:44:19.191Z Has data issue: false hasContentIssue false

Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction

Published online by Cambridge University Press:  25 November 2008

C. E. TINNEY
Affiliation:
Department of Aerospace Engineering & Engineering Mechanics, University of Texas at Austin, Austin, TX 78712, USA
L. S. UKEILEY
Affiliation:
Department of Mechanical & Aerospace Engineering, University of Florida, Research and Engineering Education Facility, Shalimar, FL 32579, USA
M. N. GLAUSER
Affiliation:
Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY 13244, USA

Abstract

Complementary low-dimensional techniques are modified to estimate the most energetic turbulent features of a Mach 0.85 axisymmetric jet in the flow's near-field regions via spectral linear stochastic estimation. This model estimate is three-dimensional, comprises all three components of the velocity field and is time resolved. The technique employs the pressure field as the unconditional input, measured within the hydrodynamic periphery of the jet flow where signatures (pressure) are known to comprise a reasonable footprint of the turbulent large-scale structure. Spectral estimation coefficients are derived from the joint second-order statistics between coefficients that are representative of the low-order pressure field (Fourier-azimuthal decomposition) and of the low-order velocity field (proper orthogonal decomposition). A bursting-like event is observed in the low-dimensional estimate and is similar to what was found in the low-speed jet studies of others. A number of low-dimensional estimates are created using different velocity–pressure mode combinations from which predictions of the far-field acoustics are invoked using Lighthill's analogy. The overall sound pressure level (OASPL) directivity is determined from the far-field prediction, which comprises qualitatively similar trends when compared to direct measurements at r/D=75. Retarded time topologies of the predicted field at 90° and 30° are also shown to manifest, respectively, high- and low-frequency wave-like motions when using a combination of only the low-order velocity modes (m=0, 1, 2). This work thus constitutes a first step in developing low-dimensional and dynamical system models from hydrodynamic pressure signatures for estimating and predicting the behaviour of the energy-containing events that govern many of the physical constituents of turbulent flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 1977 On the role of conditional averages in turbulence theory. Turbulence in Liquids; Proc. 4th Biennal Symp. Missouri, USA (A77-40426 18-34), Princeton, NJ, pp. 323–332. Science Press.Google Scholar
Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid. Mech. 23, 261304.CrossRefGoogle Scholar
Adrian, R. J. 1996 Stochastic estimation of the structure of turbulent flows. Eddy Structure Identification (ed. Bonnet, J. P.), pp. 145195. Springer.CrossRefGoogle Scholar
Alkislar, M. B.Krothapalli, A. & Butler, G. W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.CrossRefGoogle Scholar
Arakeri, V. H., Krothapalli, A., Siddavaram, V., Alkislar, M. B. & Lourenco, L. M. 2003 On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 7598.CrossRefGoogle Scholar
Arndt, R. E. A., Long, D. F. & Glauser, M. N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet, J. Fluid Mech. 340, 133.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.CrossRefGoogle Scholar
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Proc. Camb. Phil. Soc. 47, 359374.CrossRefGoogle Scholar
Bendat, J. S. & Piersol, A. G. 1980 Engineering Applications of Correlation and Spectral Analysis. John Wiley.Google Scholar
Bergmann, M., Cordier, L. & Blancher, J.-P. 2005 Optimal rotary control of the cylindrical wake using proper orthogonal decomposition reduced-order model. Phys. Fluids 17, 097101-1.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–75.CrossRefGoogle Scholar
Bonnet, J.-P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exps. Fluids 17 (5), 307314.CrossRefGoogle Scholar
Borée, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exps. Fluids 35, 188192.CrossRefGoogle Scholar
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19, 591624.CrossRefGoogle Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.CrossRefGoogle Scholar
Chang, P. 1985 Fluctuating pressure and velocity fields in the near field of a round jet. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, USA.Google Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.CrossRefGoogle Scholar
Citriniti, J. H. & George, W. K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137166.CrossRefGoogle Scholar
Coiffet, F., Delville, J., Ricaud, F. & Valiere, J. C. 2004 Nearfield pressure of a subsonic free jet, estimation and separation of hydrodynamic and acoustic components. Proc. 10th European Turbulence Conf. (ed. Anderson, H. I. & Krogstad, P. A.), Trondheim, Norway, p. 168.Google Scholar
Coiffet, F., Jordan, P., Delville, J., Gervais, Y. & Ricaud, F. 2006 Coherent structures in subsonic jets: a quasi-irrotational source mechanism? Intl. J. Aeroacoust 5, 6789.CrossRefGoogle Scholar
Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 16, 3196.CrossRefGoogle Scholar
Druault, P., Delville, J. & Bonnet, J.-P. 2005 Experimental 3D analysis of the large scale behavior of a plane turbulent mixing layer? Flow Turbulence Combust. 74, 207233.CrossRefGoogle Scholar
Elsinga, G. E., Scarano, F., Wieneke, B. & Oudheusden, B. W. 2006 Tomographic particle image velocimetry. Expe. Fluids 41, 933947.CrossRefGoogle Scholar
Ewing, D. & Citriniti, J. 1999 Examination of a LSE/POD complementary technique using single and multi-time information in the axisymmetric shear layer. Proc. IUTAM Symp. in Lynby, Denmark, 25–29 May, 1997 (ed. Sorensen, J. N., Hopfinger, E. J. & Aubry, N.), pp. 375384. Kluwer.Google Scholar
Ffowcs Williams, L. E. & Kempton, A. J. 1978 The noise from the large scale structure of a jet. J. Fluid Mech. 84, 673694.CrossRefGoogle Scholar
Freund, J. B. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.CrossRefGoogle Scholar
Freund, J. B. & Colonius, T. 2002 POD analysis of sound generation by a turbulent jet. AIAA Paper 2002-0072.Google Scholar
Freund, J. B., Samanta, A., Wei, M. & Lele, S. 2005 The robustness of acoustic analogies. AIAA Paper 2005-2940.CrossRefGoogle Scholar
Gamard, S., Jung, D. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205230.CrossRefGoogle Scholar
George, W. K., Beuther, P. D. & Arndt, R. E. A. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 155191.CrossRefGoogle Scholar
Glauser, M. N. 1987 Coherent structures in the axisymmetric turbulent jet mixing layer. PhD dissertation, State University of New York at Buffalo. Amherst.CrossRefGoogle Scholar
Glauser, M. N. & George, W. K. 1987 Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence. Advances in Turbulence (ed. Comte-Bellot, G. & Mathieu, J.), 357366. Springer.CrossRefGoogle Scholar
Glauser, M. N., Leib, S. J. & George, W. K. 1985 Coherent structures in the axisymmetric turbulent jet mixing layer. Proc. fifth Symp. Turb. Shear Flows, Cornell University, Ithaca, NY, USA.Google Scholar
Glauser, M. N., Zheng, X. & Doering, C. 1991 The dynamics of organized structures in the axisymmetric jet mixing layer. Trubulence and Coherent Structures (ed. Lesieur, M. & Metais, O.), pp. 253265. Kluwer.CrossRefGoogle Scholar
Glauser, M. N., Young, M. J., Higuchi, H., Tinney, C. E. & Carlson, H. 2004 POD based experimental flow control on a NACA-4412 airfoil. AIAA Paper 2004-0575.Google Scholar
Gordeyev, S. V. & Thomas, F. O. 2002 Coherent structure in turbulent planar jet. Part 2. Structural topology via POD eigenmode projection. J. Fluid Mech. 460, 349380.CrossRefGoogle Scholar
Grinstein, F. F., Glauser, M. N. & George, W. K. 1995 Vorticity in jets. In Fluid Vortices (ed. Green, S. I.), pp. 6594. Kluwer.CrossRefGoogle Scholar
Guitton, A., Tinney, C. E., Jordan, P. & Delville, J. 2007 Measurements in a co-axial subsonic jet. AIAA Paper 2007-0015.CrossRefGoogle Scholar
Hall, A. M., Glauser, M. N. & Tinney, C. E. 2005 Experimental investigation of the pressure–velocity correlation of a M = 0.6 axisymmetric jet. AIAA Paper 2005-5294.CrossRefGoogle Scholar
Hall, J. W. & Ewing, D. 2006 A combined spatial and temporal decomposition of the coherent structures in the three-dimensional wall jet. AIAA Paper 2006-0308.CrossRefGoogle Scholar
Hileman, J. I., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.CrossRefGoogle Scholar
Hudy, L. M., Naguib, A. & Humphreys, W. M. 2007 Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys. Fluids. 19 (2), 024103.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Res. Rep. CTR-S88, 193–208.Google Scholar
Hussain, A. K. M. F. & Clark, A. R. 1981 On the coherent structure of the axisymmetric mixing layer: a flow-visualization study. J. Fluid Mech. 104, 263294.CrossRefGoogle Scholar
Iqbal, M. O. & Thomas, F. O. 2007 Coherent structures in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J. Fluid Mech. 571, 281326.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jordan, P. & Gervais, Y. 2007 Subsonic jet aeroacoustic: associating experiment, modelling and simulation. Exps. Fluids 44 (1), 121.CrossRefGoogle Scholar
Jordan, P., Schlegel, M., Stalnov, O., Noack, B. R. & Tinney, C. E. 2007 Identifying noisy and quiet modes in a jet. AIAA Paper 2007-3602.CrossRefGoogle Scholar
Jung, D., Gamard, S. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173204.CrossRefGoogle Scholar
Kerhervé, F., Jordan, P., Gervais, Y., Valière, J. C. & Braud, P. 2004 Two-point laser Doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exps. Fluids 37 (3), 419437.CrossRefGoogle Scholar
Ko, N. W. M. & Davies, P. O. A. L. 1971 The near field within the potential cone of subsonic cold jets. J. Fluid Mech. 50, 4978.CrossRefGoogle Scholar
Lau, J. C., Fisher, M. J. & Fuchs, H. V. 1972 The intrinsic structure of turbulent jets. J. Sound Vib. 22 (4), 379406.CrossRefGoogle Scholar
Lau, J. C., Morris, P. J. & Fisher, M. J. 1979 Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93, 127.CrossRefGoogle Scholar
Laufer, J. & Yen, T. C. 1983 Noise generation by a Low Mach number jet. J. Fluid Mech. 134, 131.CrossRefGoogle Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically: general theory. Proc. R. Soc. Lond. 211, 564587.Google Scholar
Lumley, J. L. 1967 The structure of inhomogenous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178. Nauka, Moscow.Google Scholar
Lumley, J. L. 1981 Coherent structure in turbulence. In Transition and Turbulence (ed. Meyer, R. E.), p. 215. Academic.CrossRefGoogle Scholar
Mankbadi, R. & Liu, J. T. C. 1984 Sound generated aerodynamically revisited: large-scale structures in a turbulent jet as a source of sound. Phil. Trans. R. Soc. Lond. A 311, 183217.Google Scholar
Michalke, A. & Fuchs, H. V. 1975 On turbulence and noise of an axisymmetric shear layer. J. Fluid Mech. 70, 179205.CrossRefGoogle Scholar
Möhring, W. 1978 On vortex sound at low Mach number. J. Fluid Mech. 85, 685691.CrossRefGoogle Scholar
Murray, N. E. & Ukeiley, L. S. 2006 Flow field dynamics in open cavity flows. AIAA Paper 2006-2428, 1–16.Google Scholar
Noack, B. R., Afanasiev, K., Morzynski, M. & Thiele, F. 1993 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.CrossRefGoogle Scholar
Pan, G. & Meng, H. 2002 Digital holographic PIV for 3D flow measurement. ASME Paper 2002-33173.CrossRefGoogle Scholar
Perret, L., Collin, E. & Delville, J. 2006 Polynomial identification of POD based low-order dynamical systems. J. Turbulence 7, 115.CrossRefGoogle Scholar
Petersen, R. A. 1978 Influence of wave dispersion on vortex pairing in a jet. J. Fluid Mech. 89, 469495.CrossRefGoogle Scholar
Picard, C. & Delville, J. 2000 Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow 21, 359364.CrossRefGoogle Scholar
Pinier, J. T., Ausseur, J. M., Glauser, M. N. & Higuchi, H. 2007 Proportional closed-loop feedback control of flow separation. AIAA J. 45 (1), 181190.CrossRefGoogle Scholar
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36, 177195.CrossRefGoogle Scholar
Powell, A. 1998 Aerodynamic and Jet Noise. John Wiley.Google Scholar
Pu, Y., Song, X., Meng, H. 2000 Off-axis holographic particle image velocimetry for diagnosing particulate flows. Exps. Fluids 29 (7), 117128.CrossRefGoogle Scholar
Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry. Springer.CrossRefGoogle Scholar
Rempfer, D. 2000 On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14, 7588.CrossRefGoogle Scholar
Ribner, H. S. 1969 Quadrupole correlations governing the pattern of jet noise. J. Fluid Mech. 38 (1), 124.CrossRefGoogle Scholar
Rowley, C. W., Colonius, T. & Murray, R. M. 2004 Model reduction for compressible flows using POD and Galerkin projection. Physica D 189 (1–2), 115129.Google Scholar
Schram, C. & Hirschberg, A. 2003 Application of vortex sound theory to vortex-pairing noise: sensitivity to errors in flow data. J. Sound Vib. 266, 10791098.CrossRefGoogle Scholar
Taylor, J. A. & Glauser, M. N. 2004 Towards practical flow sensing and control via POD and LSE based low-dimensional tools. Trans. ASME I: J. Fluids Engng 126, 337345.Google Scholar
Taylor, J. T., Ukeiley, L. S. & Glauser, M. N. 2001 A low-dimensional description of the compressible axisymmetric shear layer. AIAA Paper 2001-0292, 1–10.Google Scholar
Tinney, C. E. 2005 Low-dimensional techniques for sound source identification in high speed jets. PhD dissertation, Syracuse University, Syracuse.Google Scholar
Tinney, C. E. & Jordan, P. 2008 The near-field pressure surrounding co-axial subsonic jets. J. Fluid Mech. 611, 175204.CrossRefGoogle Scholar
Tinney, C. E., Taylor, J. A., Eaton, E. & Glauser, M. N. 2002 Low dimensional descriptions of axisymmetric flows. Proc. 9th European Turbulence Conf. Southampton, UK (ed. Castro, I. P. & Hancock, P. E.).Google Scholar
Tinney, C. E., Hall, A., Glauser, M. N., Ukeiley, L. S. & Coughlin, T. 2004 Designing an anechoic chamber for the experimental study of high speed heated jets. AIAA Paper 2004-0010.CrossRefGoogle Scholar
Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2005 The evolution of the most energetic modes in a high subsonic Mach number turbulent jet. AIAA Paper 2005-0417.CrossRefGoogle Scholar
Tinney, C., Coiffet, F., Delville, J., Glauser, M., Jordan, P & Hall, A. 2006 On spectral linear stochastic estimation. Exps. Fluids 41 (5), 763775.CrossRefGoogle Scholar
Tinney, C. E., Jordan, P., Delville, J., Hall, A. M. & Glauser, M. N. 2007 A time-resolved estimate of the turbulence and sound source mechanisms in a subsonic jet flow. J. Turbulence 8 (7), 120.CrossRefGoogle Scholar
Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2008 Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 612, 107141.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Ukeiley, L. S. & Murray, N. E. 2007 Modified quadratic stochastic estimation of resonating subsonic cavity flow. J. Turbulence 8, p. 53.Google Scholar
Ukeiley, L. S. & Ponton, M. K. 2004 On the near field pressure of a transonic axisymmetric jet. Intl. J. Aeroacoust. 3 (1), 4366.CrossRefGoogle Scholar
Ukeiley, L. S., Cole, D. R. & Glauser, M. N. 1993 An examination of the axisymmetric jet mixing layer using coherent structure detection techniques. Eddy Structure Identification in Free Turbulent Shear Flows., Proc. of the IUTAM Symp.-Poitiers October 1992 (ed. Bonnet, J.-P. & Glauser, M. N.), 550–534. Kluwer.Google Scholar
Ukeiley, L., Seiner, J. & Ponton, M. 1999 Azimuthal structure of an axisymmetric jet mixing layer. ASME Paper FEDSM 1999-7252.Google Scholar
Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Glauser, M. N. & Bonnet, J. P. 2001 Examination of large scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model. J. Fluid Mech. 441, 67108.CrossRefGoogle Scholar
Ukeiley, L. S., Tinney, C. E., Mann, R. & Glauser, M. N. 2007 Spatial correlations in a transonic jet. AIAA J. 45 (6), 13571369.CrossRefGoogle Scholar
Viswanathan, K. 2004 Aeroacoustics of hot jets. J. Fluid Mech. 516, 3982.CrossRefGoogle Scholar
Wernet, M. P. 2006 Time resolved PIV for space–time correlations in hot jets. AIAA Paper 2006-0047.CrossRefGoogle Scholar
Yule, A. J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89, 413432.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar