Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T23:35:06.492Z Has data issue: true hasContentIssue false

Longitudinal and transverse flow over a cavity containing a second immiscible fluid

Published online by Cambridge University Press:  01 February 2013

Clarissa Schönecker*
Affiliation:
Institute for Nano- and Microfluidics, Center of Smart Interfaces, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Steffen Hardt
Affiliation:
Institute for Nano- and Microfluidics, Center of Smart Interfaces, Technische Universität Darmstadt, 64287 Darmstadt, Germany
*
Email address for correspondence: [email protected]

Abstract

An analytical solution for the low-Reynolds-number flow field of a shear flow over a rectangular cavity containing a second immiscible fluid is derived. While flow of a single-phase fluid over a cavity is a standard case investigated in fluid dynamics, flow over a cavity that is filled with a second immiscible fluid has received little attention. The flow field inside the cavity is considered to define a boundary condition for the outer flow, which takes the form of a Navier slip condition with locally varying slip length. The slip-length function is determined heuristically from the related problem of lid-driven cavity flow. Based on the Stokes equations and complex analysis, it is then possible to derive a closed analytical expression for the flow field over the cavity for both the transverse and the longitudinal case. The result is a comparatively simple function, which displays the dependence of the flow field on the cavity geometry and the medium filling the cavity. The analytically computed expression agrees well with results obtained from a numerical solution of the Navier–Stokes equations.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atanacković, T. M. 1977 Slow viscous flows over a flat plate with mixed boundary conditions. Ing.-Arch. 46, 157160.CrossRefGoogle Scholar
Belyaev, A. V. & Vinogradova, O. I. 2010 Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech. 652, 489499.CrossRefGoogle Scholar
Biben, T. & Joly, L. 2008 Wetting on nanorough surfaces. Phys. Rev. Lett. 100, 186103.CrossRefGoogle ScholarPubMed
Cherepanov, G. P. 1977 Mechanics of Brittle Fracture. McGraw-Hill.Google Scholar
Ciccotti, M., George, M., Ranieri, V., Wondraczek, L. & Marlière, C. 2008 Dynamic condensation of water at crack tips in fused silica glass. J. Non-Cryst. Solids 354, 564568.CrossRefGoogle Scholar
Cottin-Bizonne, C., Barentin, C., Charlaix, É., Bocquet, L. & Barrat, J. L. 2004 Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E 15, 427438.CrossRefGoogle ScholarPubMed
Crowdy, D. 2010 Slip length for longitudinal shear flow over a dilute periodic mattress of protruding bubbles. Phys. Fluids 22 (12), 121703.CrossRefGoogle Scholar
Davis, A. M. J. & Lauga, E. 2009 Geometric transition in friction for flow over a bubble mattress. Phys. Fluids 21 (1), 011701.CrossRefGoogle Scholar
Davis, A. M. J. & Lauga, E. 2010 Hydrodynamic friction of fakir-like superhydrophobic surfaces. J. Fluid Mech. 661, 402411.CrossRefGoogle Scholar
Fisher, L. R., Gamble, R. A. & Middlehurst, J. 1981 The Kelvin equation and the capillary condensation of water. Nature 290, 575576.CrossRefGoogle Scholar
Fisher, L. R. & Israelachvili, J. N. 1979 Direct experimental verification of the Kelvin equation for capillary condensation. Nature 277, 248249.CrossRefGoogle Scholar
Galliero, G. 2010 Lennard-Jones fluid–fluid interfaces under shear. Phys. Rev. E 81, 056306.CrossRefGoogle ScholarPubMed
Garabedian, P. R. 1966 Free boundary flows of a viscous liquid. Commun. Pure Appl. Maths. 19 (4), 421434.CrossRefGoogle Scholar
Higdon, J. J. L. 1985 Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159, 195226.CrossRefGoogle Scholar
Hocking, L. M. 1976 A moving fluid interface on a rough surface. J. Fluid Mech. 76 (4), 801817.CrossRefGoogle Scholar
Hu, Y., Zhang, X. & Wang, W. 2010 Boundary conditions at the liquid–liquid interface in the presence of surfactants. Langmuir 26, 1069310702.CrossRefGoogle ScholarPubMed
Joseph, D. D. & Sturges, L. 1978 The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II. SIAM J. Appl. Maths. 34 (1), 726.CrossRefGoogle Scholar
Jovanović, J., Frohnapfel, B. & Delgado, A. 2010 Viscous drag reduction with surface-embedded grooves. In Turbulence and Interactions (ed. Deville, M. O., , T.-H. & Sagaut, P.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design , vol. 110, pp. 191197. Springer.CrossRefGoogle Scholar
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows. Springer.Google Scholar
Keldysh, M. & Sedov, L. 1937 Sur la solution effective de quelques problèmes limites pour les fonctions harmoniques. Dokl. Acad. Nauk USSR 16 (1), 710.Google Scholar
Lauga, E., Brenner, M. P. & Stone, H. A. 2005 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics (ed. Foss, J., Tropea, C. & Yarin, A.). Springer.Google Scholar
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.CrossRefGoogle Scholar
Lawrentjew, M. A. & Schabat, B. W. 1967 Methoden der komplexen Funktionentheorie. VEB Deutscher.Google Scholar
Lee, C., Choi, C.-H. & Kim, C.-J. 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101, 064501.CrossRefGoogle ScholarPubMed
Ma, M. & Hill, R. M. 2006 Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 11 (4), 193202.CrossRefGoogle Scholar
Moffatt, H. K. 1963 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.CrossRefGoogle Scholar
Muskhelishvili, N. I. 1975 Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff International.Google Scholar
Muskhelishvili, N. I. 2008 Singular Integral Equations. Dover.Google Scholar
Navier, M. 1823 Mémoire sur les lois du mouvement des fluides. Mém. Acad. R. Sci. Inst. Fr. 6, 389440.Google Scholar
Nosonovsky, M. & Bhushan, B. 2008 Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces. J. Phys.: Condens. Matter 20 (22), 225009.Google Scholar
Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities. J. Fluid Mech. 28 (4), 643655.CrossRefGoogle Scholar
Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23 (3), 353372.CrossRefGoogle Scholar
Prasad, A. K. & Koseff, J. R. 1989 Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids A 1 (2), 208218.CrossRefGoogle Scholar
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89109.CrossRefGoogle Scholar
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids 19, 043603.CrossRefGoogle Scholar
Shankar, P. N. 1993 The eddy structure in Stokes flow in a cavity. J. Fluid Mech. 250, 371383.CrossRefGoogle Scholar
Shankar, P. N. & Deshpande, M. D. 2000 Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32 (1), 93136.CrossRefGoogle Scholar
Shen, C. & Floryan, J. M. 1985 Low Reynolds number flow over cavities. Phys. Fluids 28 (11), 31913202.CrossRefGoogle Scholar
Smirnow, W. I. 1974 Lehrgang der höheren Mathematik, III, vol. 4. VEB Deutscher.Google Scholar
Sotkilava, O. V. & Cherepanov, C. P. 1974 Some problems of the nonhomogeneous elasticity theory. Prikl. Mat. Mekh. 38 (3), 539550.Google Scholar
Steinberger, A., Cottin-Bizonne, C., Kleimann, P. & Charlaix, E. 2007 High friction on a bubble mattress. Nat. Mater. 6, 665668.CrossRefGoogle ScholarPubMed
Tsai, P., Peters, A. M., Pirat, C., Wessling, M., Lammertink, R. G. H. & Lohse, D. 2009 Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21 (11), 112002.CrossRefGoogle Scholar
Viswanath, P. R. 2002 Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 38, 571600.CrossRefGoogle Scholar
Yang, S., Dammer, S. M., Bremond, N., Zandvliet, H. J. W., Kooij, E. S. & Lohse, D. 2007 Characterization of nanobubbles on hydrophobic surfaces in water. Langmuir 23 (13), 70727077.CrossRefGoogle ScholarPubMed
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (12), 123601.CrossRefGoogle Scholar