Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T05:46:57.190Z Has data issue: false hasContentIssue false

The lift force on a bubble in a sheared suspension in a slightly inclined channel

Published online by Cambridge University Press:  25 November 2008

XIAOLONG YIN
Affiliation:
School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
DONALD L. KOCH
Affiliation:
School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA

Abstract

The lattice Boltzmann method was applied to simulate the free rise of monodisperse non-coalescing spherical bubbles in slightly inclined channels bound by solid walls. The Reynolds number based on the relative velocity between the bubbles and the fluid ranged from 4 to 16, the volume fraction from 5% to 10% and the inclination angle from 2° to 6°. The simulations revealed that the weak buoyancy component normal to the walls led to a layer of bubbles near the upper wall and a depleted layer near the bottom wall. These thin layers drove a nearly viscometric shear flow within the bulk of the channel that allowed an unambiguous determination of the lift force in a sheared homogeneous and freely evolving bubble suspension. The lift force coefficients calculated from our simulations were always higher than those for isolated spherical bubbles, suggesting that the lift force is enhanced by hydrodynamic interactions among the bubbles. Experimental measurements of the velocity gradient in 10% volume fraction bubble suspensions in glycerine–water–electrolyte mixtures in slightly inclined channels yielded lift coefficients in excess of those predicted for isolated bubbles and confirmed the qualitative predictions of the simulations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auton, T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Biesheuval, A. & Spoelstra, S. 1989 The added mass coefficient of a dispersion of spherical gas bubbles in liquid. Intl J. Multiphase Flow 15, 911924.CrossRefGoogle Scholar
Bulthuis, H. F., Prosperetti, A. & Sangani, A. S. 1995 ‘Particle stress’ in disperse two-phase potential flow. J. Fluid Mech. 294, 116.CrossRefGoogle Scholar
Bunner, B. & Tryggvason, G. 2003 Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495, 77118.CrossRefGoogle Scholar
Chen, A. U., Notz, P. K. & Basaran, O. A. 2002 Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88, 174501.CrossRefGoogle ScholarPubMed
d'Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phils. Trans. R. Soc. A 360, 437451.CrossRefGoogle ScholarPubMed
Kang, S.-Y., Sangani, A. S., Tsao, H.-K. & Koch, D. L. 1997 Rheology of dense bubble suspensions. Phys. Fluids 9 (6), 15401561.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 2005 Microhydrodynamics: Principles and Selected Applications. Dover.Google Scholar
Ladd, A. J. C. 1994 a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.CrossRefGoogle Scholar
Ladd, A. J. C. 1994 b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.CrossRefGoogle Scholar
Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle–fluid suspensions. J. Stat. Phys. 104, 11911251.CrossRefGoogle Scholar
Legendre, D. & Magnaudet, J. 1997 A note on the lift force on a bubble or a drop in a low-{R}eynolds-number shear flow. Phys. Fluids 9, 35723574.CrossRefGoogle Scholar
Legendre, D. & Magnaudet, J. 1998 Lift force on a bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.CrossRefGoogle Scholar
Lessard, R. R. & Zieminski, S. A. 1971 Bubble coalescence and gas transfer in electrolitic aqueous solutions. Ind. Engng Chem. Fundam. 10, 260269.CrossRefGoogle Scholar
Lighthill, M. J. 1956 Drift. J. Fluid Mech. 1, 3153.CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.CrossRefGoogle Scholar
Maxworthy, T., Gnann, C., Kürten, M. & Durst, F. 1996 Experiments on the rise of air bubbles in clean viscous liquids. J. Fluid Mech. 321, 421441.CrossRefGoogle Scholar
McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.CrossRefGoogle Scholar
Nguyen, N.-Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708.Google ScholarPubMed
Rensen, J., Bosman, D., Magnaudet, J., Ohl, C.-D., Prosperetti, A., Tögel, R., Versluis, M. & Lohse, D. 2001 Spiraling bubbles: how acoustic and hydrodynamic forces compete. Phys. Rev. Lett. 86, 48194822.CrossRefGoogle ScholarPubMed
Saffman, P. G. 1965 The lift force on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Sangani, A. S. & Acrivos, A. 1983 Creeping flow through cubic arrays of spherical bubbles. Intl J. Multiphase Flow 9, 181185.CrossRefGoogle Scholar
Sangani, A. S. & Didwania, A. K. 1993 Dispersed-phase stress tensor of bubbly liquids at large Reynolds numbers. J. Fluid Mech. 248, 2754.CrossRefGoogle Scholar
Sangani, A. S. & Mo, G. 1994 Inclusion of lubrication forces in dynamical simulations. Phys. Fluids 6, 16531662.CrossRefGoogle Scholar
Sankaranarayanan, K. & Sundaresan, S. 2002 Lift force in bubbly suspensions. Chem. Engng Sci. 57, 35213542.CrossRefGoogle Scholar
Spelt, P. D. M. & Sangani, A. S. 1998 Properties and averaged equations for flows of bubbly liquids. Appl. Sci. Res. 58, 337386.CrossRefGoogle Scholar
Sridhar, G. & Katz, J. 1995 Drag and lift forces on microscopic bubbles entrained by a vortex. Phys. Fluids 7, 389399.CrossRefGoogle Scholar
Taylor, G. I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138, 4148.Google Scholar
Tomiyama, A., Tamai, H., Zun, I. & Hosokawa, S. 2002 Transverse migration of single bubbles in simple shear flows. Chem. Engng Sci. 57, 18491858.CrossRefGoogle Scholar
Tsao, H.-K. & Koch, D. L. 1994 Collisions of slightly deformable, high Reynolds number bubbles with short-range repulsive forces. Phys. Fluids 6, 25912605.CrossRefGoogle Scholar
Van Nierop, E. A., Luther, S., Bluemink, J. J., Magnaudet, J., Prosperetti, A. & Lohse, D. 2007 Drag and lift forces on bubbles in a rotating flow. J. Fluid Mech. 571, 439454.CrossRefGoogle Scholar
Weissenborn, P. K. & Pugh, R. J. 1996 Surface tension of aqueous solutions of electrolytes: Relationship with ion hydration, oxygen solubility, and bubble coalescence. J. Colloid Interface Sci. 14, 550563.CrossRefGoogle Scholar
Wells, J. C. 1996 A geometrical interpretation of force on a translating body in rotational flow. Phys. Fluids 8, 442450.CrossRefGoogle Scholar
van Wijngaarden, L. 1976 Hydrodynamic interactions between bubbles in liquid. J. Fluid Mech. 77, 2744.CrossRefGoogle Scholar
Yin, X. 2007 Structure-property relations in bubble and solid particle suspensions with moderate Reynolds numbers. PhD thesis. Cornell University, Ithaca, NY, USA.Google Scholar
Yin, X., Koch, D. L. & Verberg, R. 2006 Lattice-Boltzmann method for simulating spherical bubbles with no-tangential stress boundary conditions. Phys. Rev. E 73, 026301.Google ScholarPubMed
Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.CrossRefGoogle Scholar
Zenit, R., Koch, D. L. & Sangani, A. S. 2003 Impedance probe to measure local gas volume fraction and bubble velocity in a bubbly liquid. Rev. Sci. Instrum. 74, 28172827.CrossRefGoogle Scholar
Zenit, R., Tsang, Y. H., Koch, D. L. & Sangani, A. S. 2004 Shear flow of a suspension of bubbles rising in an inclined channel. J. Fluid Mech. 515, 261292.CrossRefGoogle Scholar
Zhang, D. Z. & Prosperetti, A. 1994 Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185219.CrossRefGoogle Scholar