Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T17:08:17.114Z Has data issue: false hasContentIssue false

Lagrangian stochastic models for turbulent relative dispersion based on particle pair rotation

Published online by Cambridge University Press:  10 December 2008

GIANNI PAGNINI*
Affiliation:
ISAC-CNR, via Gobetti 101, I-40129 Bologna, Italy

Abstract

The physical picture of a fluid particle pair as a couple of material points rotating around their centre of mass is proposed to model turbulent relative dispersion in the inertial range. This scheme is used to constrain the non-uniqueness problem associated to the Lagrangian models in the well-mixed class and the properties of the stochastic process derived are analysed with respect to some turbulent velocity characteristics. A simple illustrative Markov model is developed in stationary homogeneous isotropic turbulence and the particle separation statistics are compared with direct numerical simulation data. In spite of the simplicity of the model, a consistent comparison is observed in the inertial range, supporting the formulation proposed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anfossi, D., Degrazia, G., Ferrero, E., Gryning, S. E., Morselli, M. G. & Trini Castelli, S. 2000 Estimation of the Lagrangian structure function constant C 0 from surface-layer wind data. Boundary-Layer Met. 95, 249270.CrossRefGoogle Scholar
Anselmet, F., Antonia, R. A. & Danaila, L. 2001 Turbulent flows and intermittency in laboratory experiments. Planet. Space Sci. 49, 11771191.CrossRefGoogle Scholar
Antonia, R. A., Ould-Rouis, M., Zhu, Y. & Anselmet, F. 1997 Fourth-order moments of longitudinal- and transverse-velocity structure functions. Europhys. Lett. 37, 8590.CrossRefGoogle Scholar
Antonia, R. A., Satyaprakash, B. R. & Chambers, A. J. 1982 Reynolds number dependence of velocity structure functions in turbulent shear flows. Phys. Fluids 25, 2937.CrossRefGoogle Scholar
Batchelor, G. K. 1950 The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Met. Soc. 76, 133146.CrossRefGoogle Scholar
Berg, J., Lüthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304–1/7.Google ScholarPubMed
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2005 Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 17 (11), 115101–1/9.CrossRefGoogle Scholar
Boffetta, G. & Sokolov, I. M. 2002 Relative dispersion in fully developed turbulence: the Richardson's law and intermittency corrections. Phys. Rev. Lett. 88 (9), 094501–1/4.CrossRefGoogle ScholarPubMed
Borgas, M. S. & Sawford, B. L. 1991 The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion. J. Fluid Mech. 228, 295320.Google Scholar
Borgas, M. S. & Sawford, B. L. 1994 A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence. J. Fluid Mech. 279, 6999.CrossRefGoogle Scholar
Borgas, M. S. & Yeung, P. K. 1998 Conditional fluid–particle accelerations in turbulence. Theoret. Comput. Fluid Dyn. 11, 6993.CrossRefGoogle Scholar
Borgas, M. S. & Yeung, P. K. 2004 Relative dispersion in isotropic turbulence. Part 2. A new stochastic model with Reynolds-number dependence. J. Fluid Mech. 503, 125160.CrossRefGoogle Scholar
Borgas, M. S., Flesch, T. K. & Sawford, B. L. 1997 Turbulent dispersion with broken reflectional symmetry. J. Fluid Mech. 332, 141156.CrossRefGoogle Scholar
Du, S., Wilson, J. D. & Yee, E. 1994 On the moments approximation method for constructing a Lagrangian stochastic model. Boundary-Layer Met. 70, 273292.CrossRefGoogle Scholar
Flesch, T. K. & Wilson, J. D. 1992 A two-dimensional trajectory-simulation model for non-Gaussian, inhomogeneous turbulence within plant canopies. Boundary-Layer Met. 61, 349374.CrossRefGoogle Scholar
Franzese, P. & Borgas, M. S. 2002 A simple relative dispersion model for concentration fluctuations in contaminant clouds. J. Appl. Met. 41, 11011111.2.0.CO;2>CrossRefGoogle Scholar
Franzese, P. & Cassiani, M. 2007 A statistical theory of turbulent relative dispersion. J. Fluid Mech. 571, 391417.CrossRefGoogle Scholar
Frisch, U. 1996 Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
Gardiner, C. W. 1990 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn.Springer.Google Scholar
Heppe, B. M. O. 1998 Generalized Langevin equation for relative turbulent dispersion. J. Fluid Mech. 357, 167198.CrossRefGoogle Scholar
Hill, R. J. 2002 Exact second-order structure–function relationships. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Hill, R. J. & Boratav, O. N. 2001 Next-order structure–function equations. Phys. Fluids 13, 276283.CrossRefGoogle Scholar
Hill, R. J. & Wilczak, J. M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247269.CrossRefGoogle Scholar
Hill, R. J. & Wilczak, J. M. 2001 Fourth-order velocity statistics. Fluid Dyn. Res. 28, 122.CrossRefGoogle Scholar
Ishihara, T. & Kaneda, Y. 2002 Relative diffusion of a pair of fluid particles in the inertial subrange of turbulence. Phys. Fluids 14, L69L72.CrossRefGoogle Scholar
Kaplan, H. & Dinar, N. 1993 A three-dimensional model for calculating the concentration distribution in inhomogeneous turbulence. Boundary-Layer Met. 62, 217245.CrossRefGoogle Scholar
Kurbanmuradov, O. A. 1997 Stochastic Lagrangian models for two-particle relative dispersion in high-Reynolds number turbulence. Monte Carlo Meth. Applic. 3, 3752.Google Scholar
Kurbanmuradov, O. A. & Sabelfeld, K. K. 1995 Stochastic Lagrangian models of relative dispersion of a pair of fluid particles in turbulent flows. Monte Carlo Meth. Applic. 1, 101136.Google Scholar
Kurbanmuradov, O. A., Sabelfeld, K. K. & Koluhin, D. 1997 Stochastic Lagrangian models for two-particle motion in turbulent flows. Monte Carlo Meth. Applic. 3, 199223.Google Scholar
Kurbanmuradov, O. A., Orszag, S. A., Sabelfeld, K. K. & Yeung, P. K. 2001 Analysis of relative dispersion of two particles by Lagrangian stochastic models and DNS methods. Monte Carlo Meth. Applic. 7, 245264.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Mechanics. Pergamon.Google Scholar
Li, Y. & Meneveau, C. 2005 Origin of non-Gaussian statistics in hydrodynamic turbulence. Phys. Rev. Lett. 95, 164502–1/4.CrossRefGoogle ScholarPubMed
Li, Y. & Menevau, C. 2006 Intermittency trends and Lagrangian evolution of non-Gaussian statistics in turbulent flow and scalar transport. J. Fluid Mech. 558, 133142.CrossRefGoogle Scholar
Maurizi, A., Pagnini, G. & Tampieri, F. 2004 The dependence of relative dispersion on turbulence scales in Lagrangian stochastic models. Phys. Rev. E 69, 037301–1/4.Google ScholarPubMed
Maurizi, A., Pagnini, G. & Tampieri, F. 2006 Turbulence scale dependece of the Richardson constant in Lagrangian stochastic models. Boundary-Layer Met. 118, 5568.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1. MIT Press.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Monti, P. & Leuzzi, G. 1996 A closure to derive a three-dimensional well-mixed trajectory-model for non-Gaussian, inhomogeneous turbulence. Boundary-Layer Met. 80, 311331.CrossRefGoogle Scholar
Narasimhan, M. N. L. 1993 Principles of Continuum Mechanics. John Wiley.Google Scholar
Nelkin, M. & Chen, S. 1998 The scaling of pressure in isotropic turbulence. Phys. Fluids 10, 21192121.CrossRefGoogle Scholar
Novikov, E. A. 1986 The Lagrangian–Eulerian probability relations and the random force method for nonhomogeneous turbulence. Phys. Fluids 29 (12), 39073909.CrossRefGoogle Scholar
Novikov, E. A. 1989 Two-particle description of turbulence, Markov property, and intermittency. Phys. Fluids A 1 2, 326330.CrossRefGoogle Scholar
Novikov, E. A. 1992 Probability distribution for three-dimensional vectors of velocity increments in turbulent flows. Phys. Rev. A 46, R6147R6149.CrossRefGoogle Scholar
Obukhov, A. M. 1941 Energy distribution in the spectrum of turbulent flow. Izv. Akad. Nauk. SSSR Geogr. Geofiz. 5, 453466.Google Scholar
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207223.CrossRefGoogle Scholar
Ould-Rouis, M., Antonia, R. A., Zhu, Y. & Anselmet, F. 1996 Turbulent pressure structure function. Phys. Rev. Lett. 77, 22222224.CrossRefGoogle ScholarPubMed
Pagnini, G. 2005 Modelli stocastici per la dispersione turbolenta degli inquinanti nei fluidi geofisici. PhD thesis, University of Urbino.Google Scholar
Pearson, B. R. & Antonia, R. A. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343382.CrossRefGoogle Scholar
Pedrizzetti, G. 1999 Quadratic Markov modeling for intermittent turbulence. Phys. Fluids 11 (6), 16941696.CrossRefGoogle Scholar
Pedrizzetti, G. & Novikov, E. A. 1994 On Markov modelling of turbulence. J. Fluid Mech. 280, 6993.CrossRefGoogle Scholar
Pope, S. 1985 PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119192.CrossRefGoogle Scholar
Praskovsky, A. & Oncley, S. 1994 Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids 6, 28862888.CrossRefGoogle Scholar
Reynolds, A. M. 1998 On trajectory curvature as a selection criterion for valid Lagrangian stochastic dispersion models. Boundary-Layer Met. 88, 7786.CrossRefGoogle Scholar
Reynolds, A. M. 1999 a On the non-uniqueness of Lagrangian stochastic models. Fluid Dyn. Res. 25, 217229.CrossRefGoogle Scholar
Reynolds, A. M. 1999 b The relative dispersion of particle pairs in stationary homogeneous turbulence. J. Appl. Met. 38, 13841390.2.0.CO;2>CrossRefGoogle Scholar
Reynolds, A. M. 2002 On the dynamical content of Lagrangian stochastic models in the well-mixed class. Boundary-Layer Met. 103, 143162.CrossRefGoogle Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. Lond. A 110, 709737.Google Scholar
Risken, H. 1989 The Fokker–Planck Equation. Methods of Solution and Applications, 2nd edn.Springer.Google Scholar
Sabelfeld, K. K. & Kurbanmuradov, O. A. 1997 Stochastic Lagrangian models for two-particle motion in turbulent flows. Monte Carlo Meth. Applic. 3, 5372.CrossRefGoogle Scholar
Sabelfeld, K. K. & Kurbanmuradov, O. A. 1998 Two-particle stochastic Eulerian–Lagrangian models of turbulent dispersion. Math. Comput. Simulation 47, 429440.CrossRefGoogle Scholar
Sawford, B. L. 1999 Rotation of trajectories in Lagrangian stochastic models of turbulent dispersion. Boundary-Layer Met. 93, 411424.CrossRefGoogle Scholar
Sawford, B. L. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289317.CrossRefGoogle Scholar
Sawford, B. L. 2006 A study of the connection between exit-time statistics and relative dispersion using a simple Lagrangian stochastic model. J. Turbulence 7 (13), 110.CrossRefGoogle Scholar
Sawford, B. L. & Borgas, M. S. 1994 On the continuity of stochastic models for the Lagrangian velocity in turbulent. Physica D 76, 297311.Google Scholar
Sawford, B. L. & Yeung, P. K. 2000 Eulerian acceleration statistics as a discriminator between Lagrangian stochastic models in uniform shear flow. Phys. Fluids 12 (8), 2033–424.CrossRefGoogle Scholar
Sawford, B. L. & Yeung, P. K. 2001 Lagrangian statistics in uniform shear flow: direct numerical simulation and Lagrangian stochastic models. Phys. Fluids 13 (9), 26272634.CrossRefGoogle Scholar
Sawford, B. L., Yeung, P. K. & Borgas, M. S. 2005 Comparison of backwards and forwards relative dispersion in turbulence. Phys. Fluids 17 (9), 095109–1/9.CrossRefGoogle Scholar
Sawford, B. L., Yeung, P. K. & Hackl, J. F. 2008 Reynolds number dependence of relative dispersion statistics in isotropic turbulence. Phys. Fluids 20 (6), 065111–1/13.CrossRefGoogle Scholar
She, Z. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. E 72, 336339.Google ScholarPubMed
Sneddon, I. N. 1972 The Use of Integral Transform. McGraw–Hill.Google Scholar
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7, 27782784.CrossRefGoogle Scholar
Sreenivasan, K. R. & Kailasnath, P. 1993 An update on the intermittency exponent in turbulence. Phys. Fluids A 5, 512514.CrossRefGoogle Scholar
Tennekes, H. 1975 Eulerian–Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561567.CrossRefGoogle Scholar
Tennekes, H. 1982 Similarity relations, scaling laws and spectral dynamics. In Atmospheric Turbulence and Air Pollution Modeling (ed. Nieuwstadt, F. T. M. & van Dop, H.), pp. 3768. Reidel.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Thomson, D. J. 1987 Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529556.CrossRefGoogle Scholar
Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 210, 113153.CrossRefGoogle Scholar
Wilson, J. D. & Flesch, T. K. 1997 Trajectory curvature as a selection criterion for valid Lagrangian stochastic models. Boundary-Layer Met. 84, 411425.CrossRefGoogle Scholar
Yeung, P. K. & Borgas, M. S. 2004 Relative dispersion in isotropic turbulence. Part 1. Direct numerical simulations and Reynolds-number dependence. J. Fluid Mech. 503, 93124.CrossRefGoogle Scholar