Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-02T22:02:41.808Z Has data issue: false hasContentIssue false

Interaction of a pair of ferrofluid drops in a rotating magnetic field

Published online by Cambridge University Press:  03 May 2018

Mingfeng Qiu
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
Shahriar Afkhami
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
Ching-Yao Chen
Affiliation:
Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, ROC
James J. Feng*
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
*
Email address for correspondence: [email protected]

Abstract

We use two-dimensional numerical simulation to study the interaction between a pair of ferrofluid drops suspended in a rotating uniform magnetic field. Numerical results show four distinct regimes over the range of parameters tested: independent spin, planetary motion, drop locking and direct coalescence. These are in qualitative agreement with experiments, and the transition between them can be understood from the competition between magnetophoretic forces and viscous drag. We further analyse in detail the planetary motion, i.e. the revolution of the drops around each other while each spins in phase with the external magnetic field. For drops, as opposed to solid microspheres, the interaction is dominated by viscous sweeping, a form of hydrodynamic interaction. Magnetic dipole–dipole interaction via mutual induction only plays a secondary role. This insight helps us explain novel features of the planetary revolution of the ferrofluid drops that cannot be explained by a dipole model, including the increase of the angular velocity of planetary motion with the rotational rate of the external field, and the attainment of a limit separation between the drops that is independent of the initial separation.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afkhami, S., Renardy, Y., Renardy, M., Riffle, J. S. & St Pierre, T. 2008 Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363380.CrossRefGoogle Scholar
Afkhami, S., Tyler, A. J., Renardy, Y., Renardy, M., Pierre, T. G. St., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.CrossRefGoogle Scholar
Bacri, J. C., Cēbers, A. O. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72, 27052708.CrossRefGoogle Scholar
Bacri, J. C., Drame, C., Kashevsky, B., Neveu, S., Perzynski, R. & Redon, C. 1995 Motion of a pair of rigid ferrofluid drops in a rotating magnetic field. In Trends in Colloid and Interface Science IX, Progress in Colloid and Polymer Science, vol. 98, pp. 124127. Springer.CrossRefGoogle Scholar
Bacri, J. C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. Lett. 43, 649654.CrossRefGoogle Scholar
Bailey, R. L. 1983 Lesser known applications of ferrofluids. J. Magn. Magn. Mater. 39, 178182.Google Scholar
Baygents, J. C., Rivette, N. J. & Stone, H. A. 1998 Electrohydrodynamic deformation and interaction of drop pairs. J. Fluid Mech. 368, 359375.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Cēbers, A. 2002 Dynamics of an elongated magnetic droplet in a rotating field. Phys. Rev. E 66, 061402.Google Scholar
Cēbers, A. & Lācis, S. 1995 Magnetic fluid free surface instabilities in high-frequency rotating magnetic fields. Braz. J. Phys. 25, 101111.Google Scholar
Chen, C.-Y., Hsueh, H.-C., Wang, S.-Y. & Li, Y.-H. 2015 Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field. Microfluid Nanofluid 18, 795806.CrossRefGoogle Scholar
Chen, C.-Y. & Li, C.-S. 2010 Ordered microdroplet formations of thin ferrofluid layer breakups. Phys. Fluids 22, 014105.CrossRefGoogle Scholar
Conroy, D. T. & Matar, O. K. 2015 Thin viscous ferrofluid film in a magnetic field. Phys. Fluids 27, 092102.CrossRefGoogle Scholar
Cowley, M. D. & Rosensweig, R. E. 1967 The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30, 671688.CrossRefGoogle Scholar
Erdmanis, J., Kitenbergs, G., Perzynski, R. & Cēbers, A. 2017 Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment. J. Fluid Mech. 821, 266295.CrossRefGoogle Scholar
Falcucci, G., Chiatti, G., Succi, S., Mohamad, A. A. & Kuzmin, A. 2009 Rupture of a ferrofluid droplet in external magnetic fields using a single-component lattice Boltzmann model for nonideal fluids. Phys. Rev. E 79, 056706.Google ScholarPubMed
Feng, J. J. & Chen, C.-Y. 2016 Interfacial dynamics in complex fluids. J. Fluid Sci. Tech. 11, JFST0021.CrossRefGoogle Scholar
Fischer, B., Huke, B., Lücke, M. & Hempelmann, R. 2005 Brownian relaxation of magnetic colloids. J. Magn. Magn. Mater. 289, 7477.CrossRefGoogle Scholar
Gao, Y., Hulsen, M. A., Kang, T. G. & den Toonder, J. M. J. 2012 Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid. Phys. Rev. E 86, 041503.Google Scholar
Garton, C. G. & Krasucki, Z. 1964 Bubbles in insulating liquids: stability in an electric field. Proc. R. Soc. Lond. A 280, 211226.Google Scholar
Helgesen, G., Pieranski, P. & Skjeltorp, A. T. 1990 Dynamic behavior of simple magnetic hole systems. Phys. Rev. A 42, 72717280.CrossRefGoogle ScholarPubMed
Korlie, M. S., Mukherjee, A., Nita, B. G., Stevens, J. G., Trubatch, A. D. & Yecko, P. 2008 Modeling bubbles and droplets in magnetic fluids. J. Phys.: Condens. Matter 20, 204143.Google ScholarPubMed
Lācis, S. 1999 Bending of ferrofluid droplet in rotating magnetic field. J. Magn. Magn. Mater. 201, 335338.CrossRefGoogle Scholar
Lamb, H. 1911 XV. On the uniform motion of a sphere through a viscous fluid. Phil. Mag. 21, 112121.CrossRefGoogle Scholar
Lebedev, A. V., Engel, A., Morozov, K. I. & Bauke, H. 2003 Ferrofluid drops in rotating magnetic fields. New J. Phys. 5, 57.CrossRefGoogle Scholar
Lebedev, A. V. & Morozov, K. I. 1997 Dynamics of a drop of magnetic liquid in a rotating magnetic field. J. Expl Theor. Phys. 65, 160165.CrossRefGoogle Scholar
Lee, W. K., Scardovelli, R., Trubatch, A. D. & Yecko, P. 2010 Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids. Phys. Rev. E 82, 016302.Google ScholarPubMed
López-Herrera, J. M., Popinet, S. & Herrada, M. A. 2011 A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230, 19391955.CrossRefGoogle Scholar
Lu, C.-Y.2017 Dynamics of ferrofluid drops in a rotational field. Master’s thesis, National Chiao Tung University, Hsinchu, Taiwan, ROC.Google Scholar
Mefford, O. T., Woodward, R. C., Goff, J. D., Vadala, T. P., Pierre, T. G. St., Dailey, J. P. & Riffle, J. S. 2007 Field-induced motion of ferrofluids through immiscible viscous media: testbed for restorative treatment of retinal detachment. J. Magn. Magn. Mater. 311, 347353.CrossRefGoogle Scholar
Miranda, J. A. 2000 Rotating Hele-Shaw cells with ferrofluids. Phys. Rev. E 62, 29852988.Google ScholarPubMed
Morozov, K. I., Engel, A. & Lebedev, A. V. 2002 Shape transformations in rotating ferrofluid drops. Europhys. Lett. 58, 229235.CrossRefGoogle Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.CrossRefGoogle Scholar
Rosensweig, R. E. 1982 Magnetic fluids. Sci. Am. 247, 136145.CrossRefGoogle Scholar
Rowghanian, P., Meinhart, C. D. & Campàs, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J. Fluid Mech. 802, 245262.CrossRefGoogle Scholar
Serwane, F., Mongera, A., Rowghanian, P., Kealhofer, D. A., Lucio, A. A., Hockenbery, Z. M. & Campàs, O. 2017 In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Meth. 14, 181186.CrossRefGoogle ScholarPubMed
Sherwood, J. D. 1991 The deformation of a fluid drop in an electric field: a slender-body analysis. J. Phys. A 24, 40474053.Google Scholar
Shliomis, M. I. 1972 Effective viscosity of magnetic suspensions. J. Exp. Theor. Phys. 34, 12911294.Google Scholar
Shliomis, M. I. & Morozov, K. I. 1994 Negative viscosity of ferrofluid under alternating magnetic field. Phys. Fluids 6, 28552861.CrossRefGoogle Scholar
Stone, H. A., Lister, J. R. & Brenner, M. P. 1999 Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A 455, 329347.CrossRefGoogle Scholar
Tackett, R. J., Thakur, J., Mosher, N., Perkins-Harbin, E., Kumon, R. E., Wang, L., Rablau, C. & Vaishnava, P. P. 2015 A method for measuring the Néel relaxation time in a frozen ferrofluid. J. Appl. Phys. 118, 064701.CrossRefGoogle Scholar
Tan, S.-H., Nguyen, N.-T., Yobas, L. & Kang, T. G. 2010 Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J. Micromech. Microengng 20, 045004.CrossRefGoogle Scholar
Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. 2013 Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341, 253257.Google ScholarPubMed
Voltairas, P. A., Fotiadis, D. I. & Michalis, L. K. 2002 Hydrodynamics of magnetic drug targeting. J. Biomech. 35, 813821.CrossRefGoogle ScholarPubMed
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2005 Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129, 163176.CrossRefGoogle Scholar
Zhu, G.-P., Nguyen, N.-T., Ramanujan, R. V. & Huang, X.-Y. 2011 Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27, 1483414841.CrossRefGoogle Scholar

Qiu et al. supplementary movie 1

Experimental observation of the planetary motion of two ferrofluid drops in a rotation magnetic field, under conditions listed in the caption to figure 1 in the main article.

Download Qiu et al. supplementary movie 1(Video)
Video 2.3 MB

Qiu et al. supplementary movie 2

Numerical simulation of the planetary motion of two ferrofluid drops in a rotation magnetic field, under conditions listed in the caption to figure 6 in the main article.

Download Qiu et al. supplementary movie 2(Video)
Video 898.3 KB

Qiu et al. supplementary movie 3

Numerical simulation of the drop locking regime under conditions listed in the caption to figure 15 in the main article.

Download Qiu et al. supplementary movie 3(Video)
Video 107.1 KB

Qiu et al. supplementary movie 4

Experimental observation of drop locking, corresponding to the snapshots of figure 16 in the main article.

Download Qiu et al. supplementary movie 4(Video)
Video 3.1 MB