Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T12:36:59.875Z Has data issue: false hasContentIssue false

Instability of compressible drops and jets

Published online by Cambridge University Press:  30 April 2012

Umpei Miyamoto*
Affiliation:
Department of Physics, Rikkyo University, Tokyo 171-8501, Japan
*
Email address for correspondence: [email protected]

Abstract

We revisit the classic problem of the stability of drops and jets held by surface tension, while regarding the compressibility of bulk fluids and spatial dimensions as free parameters. By mode analysis, it is shown that there exists a critical compressibility above which the drops (and discs) become unstable for a spherical perturbation. For a given value of compressibility (and of the surface tension and the density at equilibrium), this instability criterion provides a minimal radius below which the drop cannot be in stable equilibrium. According to the existence of the above unstable mode of the drop, which corresponds to a homogeneous perturbation of a cylindrical jet, the dispersion relation of Rayleigh–Plateau instability for cylinders drastically changes. In particular, we identify another critical compressibility above which the homogeneous unstable mode is predominant. The analysis is carried out for non-relativistic and relativistic perfect fluids, the self-gravity of which is ignored.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amarouchene, Y. & Kellay, H. 2006 Speed of sound from shock fronts in granular flows. Phys. Fluids 18, 031707.Google Scholar
2. Becker, E., Hiller, W. J. & Kowalewski, T. A. 1991 Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189.Google Scholar
3. Bhattacharyya, S., Hubeny, V. E., Minwalla, S. & Rangamani, M. 2008 Nonlinear fluid dynamics from gravity. J. High Energy Phys. 2008 (02), 045.CrossRefGoogle Scholar
4. Bohr, A. & Mottelson, B. R. 1969 Nuclear Structure, Volume I: Single-Particle Motion . W. A. Benjamin.Google Scholar
5. Bohr, A. & Mottelson, B. R. 1975 Nuclear Structure, Volume II: Nuclear Deformations . W. A. Benjamin.Google Scholar
6. Boudet, J. F., Amarouchene, Y. & Kellay, H. 2008 Shock front width and structure in supersonic granular flows. Phys. Rev. Lett. 101, 254503.CrossRefGoogle ScholarPubMed
7. Caldarelli, M. M., Dias, O. J. C., Emparan, R. & Klemm, D. 2009 Black holes as lumps of fluid. J. High Energy Phys. 2009 (04), 024.Google Scholar
8. Cardoso, V. & Gualtieri, L. 2006 Equilibrium configurations of fluids and their stability in higher dimensions. Class. Quant. Grav. 23, 71517198.Google Scholar
9. Chandrasekhar, S. 1959 The oscillations of a viscous liquid globe. Proc. Lond. Math. Soc. 9, 141.CrossRefGoogle Scholar
10. Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
11. Chandrasekhar, S. 1964 Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Phys. Rev. Lett. 12, 114.CrossRefGoogle Scholar
12. Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865.CrossRefGoogle Scholar
13. Kelvin, Lord 1890 Oscillations of a liquid sphere. Math. Phys. Papers 3, 384.Google Scholar
14. Lahiri, S. & Minwalla, S. 2008 Plasmarings as dual black rings. J. High Energy Phys. 2008 (05), 001.CrossRefGoogle Scholar
15. Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
16. Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Butterworth-Heinemann.Google Scholar
17. Maeda, K.-I. & Miyamoto, U. 2009 Black hole–black string phase transitions from hydrodynamics. J. High Energy Phys. 2009 (03), 066.CrossRefGoogle Scholar
18. Misner, C. W., Thorne, K. S. & Wheeler, J. A. 1974 Gravitation. W. H. Freeman.Google Scholar
19. Plateau, J. A. F. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthiers-Villars.Google Scholar
20. Prado, G., Amarouchene, Y. & Kellay, H. 2011 Experimental evidence of a Rayleigh–Plateau instability in free falling granular jets. Phys. Rev. Lett. 106, 198001.CrossRefGoogle ScholarPubMed
21. Rangamani, M. 2009 Gravity and hydrodynamics: lectures on the fluid–gravity correspondence. Class. Quant. Grav. 26, 224003.CrossRefGoogle Scholar
22. Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc. 10, 4.Google Scholar
23. Rayleigh, Lord 1894 The Theory of Sound. Macmillan.Google Scholar
24. Reid, W. H. 1960 The oscillations of a viscous liquid drop. Q. Appl. Math. 18, 86.CrossRefGoogle Scholar
25. Rowlinson, J. S. & Widom, B. 2002 Molecular Theory of Capillarity. Dover.Google Scholar
26. Shapiro, S. L. & Teukolsky, S. A. 1983 Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. Wiley.CrossRefGoogle Scholar
27. Wald, R. M. 1984 General Relativity. University of Chicago Press.Google Scholar
28. Weast, R. C. (Ed.) 1978 Handbook of Chemistry and Physics. CRC.Google Scholar