Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-20T08:36:20.778Z Has data issue: false hasContentIssue false

Instability and focusing of internal tides in the deep ocean

Published online by Cambridge University Press:  24 September 2007

OLIVER BÜHLER
Affiliation:
Center for Atmosphere Ocean Science at the Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
CAROLINE J. MULLER*
Affiliation:
Center for Atmosphere Ocean Science at the Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
*
Author to whom correspondence should be addressed.

Abstract

The interaction of tidal currents with sea-floor topography results in the radiation of internal gravity waves into the ocean interior. These waves are called internal tides and their dissipation due to nonlinear wave breaking and concomitant three-dimensional turbulence could play an important role in the mixing of the abyssal ocean, and hence in controlling the large-scale ocean circulation.

As part of on-going work aimed at providing a theory for the vertical distribution of wave breaking over sea-floor topography, in this paper we investigate the instability of internal tides in a very simple linear model that helps us to relate the formation of unstable regions to simple features in the sea-floor topography. For two-dimensional tides over one-dimensional topography we find that the formation of overturning instabilities is closely linked to the singularities in the topography shape and that it is possible to have stable waves at the sea floor and unstable waves in the ocean interior above.

For three-dimensional tides over two-dimensional topography there is in addition an effect of geometric focusing of wave energy into localized regions of high wave amplitude, and we investigate this focusing effect in simple examples. Overall, we find that the distribution of unstable wave breaking regions can be highly non-uniform even for very simple idealized topography shapes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alford, M. H., Gregg, M. C. & Merrifield, M. A. 2006 Structure, propagatio and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr. 36, 9971018.CrossRefGoogle Scholar
Aucan, J., Merrifield, M. A., Luther, D. S. & Flament, P. 2006 Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36, 12021219.CrossRefGoogle Scholar
Baines, P. G. 1973 The generation of internal tides by flat-bump topography. Deep-Sea Res. 20, 179205.Google Scholar
Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32, 29002914.2.0.CO;2>CrossRefGoogle Scholar
Bell, T. H. 1975 a Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67, 705722.CrossRefGoogle Scholar
Bell, T. H. 1975 b Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320327.CrossRefGoogle Scholar
Bender, C. M. & Orszag, S. A. 2005 Asymptotic expansion of integrals. In Advanced Mathematical Methods for Scientists and Engineers, 1st edn, pp. 247316. Springer.Google Scholar
Canuto, V. M., Howard, A. M., Muller, C. J. & Jayne, S. R. 2007 Giss mixing model: Inclusion of tides and bottom boundary layer. Ocean Modelling (submitted).Google Scholar
Cox, C. & Sandstrom, H. 1962 Coupling of internal and surface waves in water of variable depth. J. Oceanogr. Soc. Japan 18, 499513.Google Scholar
Di Lorenzo, E., Young, W. R. & Llewellyn Smith, S. G. 2006 Numerical and analytical estimates of M 2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr. 36, 10721084.CrossRefGoogle Scholar
Egbert, G. D. & Ray, R. D. 2000 Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775778.CrossRefGoogle ScholarPubMed
Egbert, G. D. & Ray, R. D. 2001 Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res. 106, 2247522502.CrossRefGoogle Scholar
Evans, L. C. 1998 Convolution and smoothing. In Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, pp. 629631. AMS.Google Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
Hibiya, T., Nagasawa, M. & Niwa, Y. 2006 Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophys. Res. Lett. 33 (3).CrossRefGoogle Scholar
Jayne, S. R. & Laurent, L. C. S. 2001 Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett. 28, 811814.CrossRefGoogle Scholar
Khatiwala, S. 2003 Generation of internal tides in an ocean of finite depth: Analytical and numerical calculations. Deep-Sea Res. 50, 321.CrossRefGoogle Scholar
Klymak, J. M., Moum, J. N., Nash, J. D., Kunze, E., Girton, J. B., Carter, G. S., Lee, C. M., Sanford, T. B. & Gregg, M. C. 2006 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr. 36, 11481164.CrossRefGoogle Scholar
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St Laurent, L. C., Schmitt, R. W. & Toole, J. M. 2000 Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179–82.CrossRefGoogle ScholarPubMed
Lee, C. M., Kunze, E., Sanford, T. B., Nash, J. D., Merrifield, M. A. & Holloway, P. E. 2006 Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge with model comparisons. J. Phys. Oceanogr. 36, 11651183.CrossRefGoogle Scholar
Legg, S. & Huijts, K. M. H. 2006 Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II 53, 140156.Google Scholar
LlewellynSmith, S. G. Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541566.2.0.CO;2>CrossRefGoogle Scholar
LlewellynSmith, S. G. Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.CrossRefGoogle Scholar
Maas, L. R. M. & Lam, F. P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.CrossRefGoogle Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. Part I: Oceanogr. Res. Papers 45, 19772010.CrossRefGoogle Scholar
Nycander, J. 2005 Generation of internal waves in the deep ocean by tides. J. Geophys. Res. 110.Google Scholar
Petrelis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36, 10531071.CrossRefGoogle Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 9396.CrossRefGoogle ScholarPubMed
Robinson, R. M. 1969 The effect of a vertical barrier on internal waves. Deep-Sea Res. 16, 421429.Google Scholar
Saenko, O. A. & Merryfield, W. J. 2005 On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr. 35, 826834.CrossRefGoogle Scholar
Seibold, E. & Berger, W. H. 1996 The Sea Floor: An Introduction to Marine Geology Springer.CrossRefGoogle Scholar
Simmons, H. L., Jayne, S. R., St. Laurent, L. C. & Weaver, A. J. 2004 Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling 6, 245263.CrossRefGoogle Scholar
Smith, W. H. F. & Sandwell, D. T. 1997 Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 19561962.CrossRefGoogle Scholar
Sobolev, S. L. 1960 On the motion of a symmetric top with a cavity filled by a fluid. J. Appl. Mech. Tech. Phys. 3, 2055.Google Scholar
St. Laurent, L. C. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.2.0.CO;2>CrossRefGoogle Scholar
St. Laurent, L. C., Simmons, H. L. & Jayne, S. R. 2002 Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 29, 2106.CrossRefGoogle Scholar
St. Laurent, L. C., Stringer, S., Garrett, C. & Perrault-Joncas, D. 2003 The generation of internal tides at abrupt topography. Deep-Sea Res. I 50, 9871003.CrossRefGoogle Scholar
Stein, E. M. 1970 Differentiability properties in terms of function spaces. In Singular Integrals and Differentiability Properties of Functions, pp. 116165. Princeton University Press.Google Scholar
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Watson, G. N. 1966 In A Treatise on the Theory of Bessel Functions, 2nd edn, p. 405. Cambridge University Press.Google Scholar
Wunsch, C. 2000 Moon, tides and climate. Nature 405, 743–4.CrossRefGoogle ScholarPubMed
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.CrossRefGoogle Scholar