Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T17:16:45.662Z Has data issue: false hasContentIssue false

The influence of vortical structures on the thermal fields of jets

Published online by Cambridge University Press:  26 April 2006

M. D. Fox
Affiliation:
Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195, USA
M. Kurosaka
Affiliation:
Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195, USA
L. Hedges
Affiliation:
Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195, USA Present address: Boeing Commercial Airplane Company, Seattle, Washington, USA.
K. Hirano
Affiliation:
Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195, USA Present address: Miyazaki University, Miyazaki, Japan.

Abstract

In this investigation we explore the effect of unsteady vortical structures on the adiabatic wall temperature distribution in an impinging jet. Treating first the simpler case of a free jet, we introduce a conceptual model for the separation of the total temperature, appealing to the dynamics of particle pathlines and vortex rings in the jet. The presence of a region of higher total temperature on the inside of the jet and a region of lower total temperature toward the jet periphery, predicted by the model, exhibits good agreement with the experimental data taken at high subsonic Mach number. The results from a numerical simulation further confirm the theoretical expectations.

Through a similar argument, we show that when a thermally insulated flat plate is inserted into the jet, the wall temperature distribution is modified by the presence of secondary vortical structures, which are induced near, and swept over, the plate surface. When the plate is near the jet nozzle, a region of lower wall temperature, attributable to these additional vortices, is observed in the experimental data. When the plate is further from the nozzle, no secondary vortices are formed and no region of lowered wall temperature is measured. Self-sustaining acoustic resonance, when it occurs, is found to alter significantly this picture of the wall temperature distribution.

Although the scope of this work is limited to free and impinging jets, this present topic, along with the previously reported mechanism of the Eckert–Weise effect, exemplifies the wider family of problems in which unsteady vortical structure strongly affects the wall temperature and heat transfer.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahuja, K. K., Lepicovsky, T. & Burrin, R. H. 1982 AIAA J. 20, 17001706.
Badri-Narayan, M. A. & Platzer, M. F. 1987 In Turbulence Management and Relaminarisation. IUTAM Symp. Bangalore, India (ed. H. W. Liepmann & R. Narashima), pp. 471184. Springer.
Brown, G. L. & Roshko, A. 1974 J. Fluid Mech. 48, 775816.
Cooper, P. I., Sheridan, J. C. & Flood, G. J. 1986 Intl J. Heat Fluid Flow 7, 6168.
Crow, S. C. & Champagne, F. H. 1971 J. Fluid Mech. 48, 547591.
Cumpsty, N. A. 1978 In The Aerothermodynamics of Aircraft Gas Turbine Engines, chap. 24, p. 2419. AFAPL-TR-78-52.
Didden, N. & Ho, C. M. 1985 J. Fluid Mech. 160, 235256.
Dimotakis, P. E. & Brown, G. L. 1976 J. Fluid Mech. 78, 535560.
Dimotakis, P. E., Miake-Lye, R. C. & Papantoniou, D. A. 1983 Phys. Fluids 26, 31853192.
Eckert, E. R. G. 1984 Mech. Engng, N.Y. 106, 5865.
Eckert, E. R. G. 1986 Intl Commun. Heat Mass Transfer 13, 127143.
Eckert, E. R. G. 1987 Wärme Stoff. 21, 7381.
Gardon, R. & Akfirat, J. C. 1966 Trans. ASME C: J. Heat Transfer 88, 101108.
Glassman, I. & John, J. E. A. 1959 J. Aero/Space Sci. 26 (6), 387388.
Goldstein, R. J., Behbahani, A. I. & Heppelmann, K. K. 1986 Intl J. Heat Mass Transfer 29 12271235.
Gutmark, E., Yassour, Y. & Wolfshtein, M. 1982 In Heat Transfer — 1982 Proc. Seventh Intl Heat Transfer Conf. Munchen, Germany, pp. 441445. Hemisphere.
Harten, A. & Yee, H. C. 1985 AIAA 85–1513.
Hedges, L. S. 1991 Numerical simulations of acoustic instabilities in the spatially developing, confined supersonic shear layer. PhD thesis, Department of Aeronautics and Astronautics, University of Washington.
Hedges, L. S. & Eberhardt, S. E. 1992 AIAA 92–0535.
Ho, C. M. & Nossier, N. S. 1981 J. Fluid Mech. 105, 119142.
Hourigan, K., Welch, L. W., Thompson, M. C., Cooper, P. I. & Welsh, M. C. 1991 Exp. thermal Fluids Sci. 4, 182191.
Hourigan, K., Welsh, M. C. & Welch, L. W. 1985 In Advances in Enhanced Heat Transfer — 1985, 23rd Natl Heat Transfer Conf., Denver, CO, pp. 9199. ASME.
Jalamani, Z. A., Van Dalsem, W. R. & Nakamura, S. 1990 AIAA Paper 90–1657.
Kurosaka, M., Gertz, J. B., Graham, J. E., Goodman, J. R., Sundaram, P., Riner, W. C., Kuroda, H. & Hankey, W. L. 1987 J. Fluid Mech. 178, 129.
Lau, J. C. & Fisher, M. J. 1975 J. Fluid Mech. 67, 229357.
Lepicovsky, J., Ahuja, K. K., Brown, W. H. & Burrin, R. H. 1986 AIAA Paper 86–1941.
Magarvey, R. H. & MacLatchy, C. S. 1964 Can. J. Phys. 42, 678683.
Ng, W. F., Chakroun, W. M. & Kurosaka, M. 1990 Phys. Fluids A 2, 971978.
O’Callaghan, J. J. & Kurosaka, M. 1992 AIAA Paper 92–019; also in AIAA J. 31, 11571159.
Parker, R. & Welsh, M. C. 1983 Intl J. Heat Fluid Flow 4, 113127.
Popiel, C. O. & Trass, O. 1991 Exp. Thermal Fluid Sci. 4, 253264.
Pronchick, S. W. & Kline, S. J. 1983 Rep. MD-42. Thermosciences Division, Department of Mechanical Engineering, Stanford University.
Schneider, P. E. M. 1980 Z. Flugwiss. Weltraumforsch. 4, 307318.
Tso, J., Kovasznay, L. S. G. & Hussain, A. K. M. F. 1981 Trans. ASME I: J. Fluids Engng. 103, 503508.
Wagner, F. R. 1971 Z. Flugwiss. 19, 3044.
Walker, J. D. A., Smith, C. R., Cerra, A. W. & Doligalski, T. L. 1987 J. Fluid Mech. 181, 99140.
Welsh, M. C., Hourigan, K., Downie, R. J., Thompson, M. C. & Stokes, A. N. 1990 Exp. Thermal Fluid Sci. 3, 138152.
Yamada, H. & Matsui, T. 1980 In Proc. 2nd Intl Symp. on Flow Visualization, Bochum, West Germany, pp. 355359. Hemisphere.
Yule, A. J. 1978 J. Fluid Mech. 89, 413432.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 J. Fluid Mech. 101, 449491.