Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:26:10.323Z Has data issue: false hasContentIssue false

Influence of confinement on a two-dimensional wake

Published online by Cambridge University Press:  21 October 2011

Luca Biancofiore
Affiliation:
Laboratoire J. A. Dieudonné Université de Nice Sophia Antipolis, Parc Valrose, F-06108 Nice CEDEX 02, France
François Gallaire*
Affiliation:
EPFL/LFMI, Route Cantonale, Lausanne, Switzerland
Richard Pasquetti
Affiliation:
Laboratoire J. A. Dieudonné Université de Nice Sophia Antipolis, Parc Valrose, F-06108 Nice CEDEX 02, France
*
Email address for correspondence: [email protected]

Abstract

The spatio-temporal development of an incompressible two-dimensional viscous wake flow confined by two flat slipping plates is investigated by means of direct numerical simulation (DNS), using a spectral Chebyshev multi-domain method. The limit between unstable and stable configurations is determined with respect to several non-dimensional parameters: the confinement, the velocity ratio and two different Reynolds numbers, and . The comparison of such limit curves with theoretical results obtained by Juniper (J. Fluid Mech., vol. 565, 2006, pp. 171–195) confirms the existence of a region at moderate confinement where the instability is maximal. Moreover, instabilities are also observed under sustained co-flow, in the form of a vacillating front. Using a direct computation of the two-dimensional base flow, we perform a local linear stability analysis for several velocity profiles prevailing at different spatial locations, so as to determine the local spatio-temporal nature of the flow: convectively unstable or absolutely unstable. Comparisons of the DNS and local stability analysis results are provided and discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Azaiez, M., Fikri, A. & Labrosse, G. 1994 A unique grid spectral solver of the nD Cartesian unsteady Stokes system: illustrative numerical results. Finite Elem. Anal. Des. 16 (3–4), 247260.CrossRefGoogle Scholar
2. Biancofiore, L. & Gallaire, F. 2011 Influence of shear layer thickness on the stability of confined two-dimensional wakes. Phys. Fluids 23, 034103.CrossRefGoogle Scholar
3. Borchers, W., Forestier, M.-Y., Kräutle, S., Pasquetti, R., Peyret, R., Rautmann, R., Ross, N. & Sabbah, C. 1998 A parallel hybrid highly accurate elliptic solver for viscous flow problems. In Numerical Flow Simulation I (ed. Breitsamter, C. & Hirschel, E. H. ). pp. 324. Vieweg.Google Scholar
4. Chomaz, J.-M. 2004 Transition to turbulence in open flows: what linear and fully nonlinear local and global theories tell us. Eur. J. Mech. B 23, 385399.CrossRefGoogle Scholar
5. Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
6. Chomaz, J.-M., Huerre, P. & Redekopp, L. G. 1991 A frequency selection criterion in spatially developing flows. Stud. Appl. Math. 84, 119144.CrossRefGoogle Scholar
7. Couairon, A. & Chomaz, J.-M. 1999 Fully nonlinear global modes in slowly varying flows. Phys. Fluids 11, 36883703.CrossRefGoogle Scholar
8. Cousin, L. & Pasquetti, R. 2004 High-order methods for the simulation of transitional to turbulent wakes. In Advances in Scientific Computing and Applications, pp. 133143. Sciences Press.Google Scholar
9. Coutanceau, M. & Bouard, R. 1977 Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 79, 231256.CrossRefGoogle Scholar
10. Davis, R. W., Moore, E. F. & Purtell, L. P. 1984 A numerical–experimental study of confined flow around rectangular cylinders. Phys. Fluids 27, 36883703.CrossRefGoogle Scholar
11. Deissler, R. J. 1987 The convective nature of instability in plane Poiseuille flow. Phys. Fluids 30, 23032305.CrossRefGoogle Scholar
12. Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
13. Forestier, M.-Y., Pasquetti, R. & Peyret, R. Computations of three-dimensional wakes in stratified fluids. In Proceedings of Computational Fluid Dynamics Conference ECCOMAS 2000, Barcelona, Spain. 2000.Google Scholar
14. Gallaire, F., Ruith, M., Meiberg, E., Chomaz, J.-M & Huerre, P. 2006 Spiral vortex breakdown as global mode. J. Fluid Mech. 549, 7180.CrossRefGoogle Scholar
15. Gill, G. S. 1978 A qualitative technique for concentric tube element optimization, utilizing the factor (dynamic head ratio-1). AIAA paper 1618.Google Scholar
16. Hammond, D. A. & Redekopp, L. G. 1997 Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech. 331, 231260.CrossRefGoogle Scholar
17. Hannemann, K. & Oertel, H. 1989 Numerical simulation of the absolutely and convectively unstable wake. J. Fluid Mech. 199, 5588.CrossRefGoogle Scholar
18. Healey, J. J. 2007 Enhancing the absolute stability of a boundary layer by adding a far-away plate. J. Fluid Mech. 579, 151168.CrossRefGoogle Scholar
19. Healey, J. J. 2009 Destabilizing effects of confinement on homogeneous mixing layers. J. Fluid Mech. 623, 241271.CrossRefGoogle Scholar
20. Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
21. Huerre, P. & Rossi, M. 1998 Hydrodynamics instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. Godrèche, C. & Manneville, P. ), pp. 81294. Cambridge University Press.CrossRefGoogle Scholar
22. Juniper, M. P. 2006 The effect of confinement on the stability of two-dimensional shear flows. J. Fluid Mech. 565, 171195.CrossRefGoogle Scholar
23. Juniper, M. P. 2007 The full impulse response of two-dimensional jet/wake flows and implications for confinement. J. Fluid Mech. 590, 163185.CrossRefGoogle Scholar
24. Juniper, M. P. 2008 The effect of confinement on the stability of non-swirling axisymmetric jets and wakes. J. Fluid Mech. 605, 227252.CrossRefGoogle Scholar
25. Juniper, M. P. & Candel, S. 2003 The stability of ducted compound flows and consequences for the geometry of coaxial injectors. J. Fluid Mech. 482, 257269.CrossRefGoogle Scholar
26. Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99, 5383.CrossRefGoogle Scholar
27. Lasheras, J. C. & Hopfinger, E. J. 2000 Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32, 275308.CrossRefGoogle Scholar
28. Leib, S. J. & Goldstein, M. E. 1986 The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479500.CrossRefGoogle Scholar
29. Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19, 024102.CrossRefGoogle Scholar
30. Loiseleux, T., Chomaz, J.-M. & Huerre, P. 1998 The effect of swirl on jets and wakes: linear instability of the Rankine vortex with axial flow. Phys. Fluids 10, 11201134.CrossRefGoogle Scholar
31. Maday, Y., Patera, A. T. & Ronquis, E. M. 1990 An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5 (4), 263292.CrossRefGoogle Scholar
32. Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.CrossRefGoogle Scholar
33. Meliga, P., Sipp, D. & Chomaz, J.-M. 2010 Elephant modes and low-frequency unsteadiness in a high Reynolds number, transonic afterbody wake. Phys. Fluids 21, 054105.CrossRefGoogle Scholar
34. Minguez, M., Pasquetti, R. & Serre, E. 2008 High-order large-eddy simulation of flow over a simplified car model. Phys. Fluids 20, 095101.CrossRefGoogle Scholar
35. Monkewitz, P. A. & Nguyen, L. N. 1987 Absolute instability in the near-wake of two-dimensional bluff bodies. J. Fluids Struct. 1, 165184.CrossRefGoogle Scholar
36. Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31, 9991006.CrossRefGoogle Scholar
37. Pasquetti, R., Bwemba, R. & Cousin, L. 2008 A pseudo-penalization method for high Reynolds number unsteady flows. Appl. Numer. Math. 58, 946954.CrossRefGoogle Scholar
38. Pasquetti, R. 2010 Temporal/spatial simulation of the stratified far wake of a sphere. Comput. Fluids 40, 179187.CrossRefGoogle Scholar
39. Peyret, R. 2001 Spectral Methods for Incompressible Viscous Flow, Applied Mathematical Sciences , vol. 148. Springer.Google Scholar
40. Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing wake flows. J. Fluid Mech. 435, 145174.CrossRefGoogle Scholar
41. Pier, B., Huerre, P. & Chomaz, J.-M. 2001 Bifurcation to fully nonlinear synchronized structures in slowly varying media. Physica D 148, 4996.CrossRefGoogle Scholar
42. Rees, S. J. & Juniper, M. P. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309336.CrossRefGoogle Scholar
43. Rehimi, F., Aloui, F., Ben Nasrallah, S., Doubliez, L. & Legrand, J. 2008 Experimental investigation of a confined flow downstream of a circular cylinder between two parallel walls. J. Fluids Struct. 24, 855882.CrossRefGoogle Scholar
44. Sabbah, C. & Pasquetti, R. 1998 A divergence-free multi-domain spectral solver of the Navier–Stokes equations in geometries of high aspect ratio. J. Comput. Phys. 139, 359379.CrossRefGoogle Scholar
45. Sahin, M. & Owens, R. G. 2004 A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Phys. Fluids 16, 13051320.CrossRefGoogle Scholar
46. Sevilla, A., Gordillo, J.-M. & Martinez-Bazan, C. 2002 The effect of the diameter ratio on the absolute and convective instability of free coflowing jets. Phys. Fluids 14, 30283038.CrossRefGoogle Scholar
47. Shair, F., Grove, A., Petersen, E. & Acrivos, A. 1963 The effect of confining walls on the stability of the steady wake behind a circular cylinder. J. Fluid Mech. 17, 546550.CrossRefGoogle Scholar
48. Stuart, J. T. & DiPrima, R. C. 1978 The Eckhaus and Benjamin–Feir resonance mechanisms. Proc. R. Soc. Lond. A 362, 2741.Google Scholar
49. Tammisola, O., Lundell, F., Schlatter, P., Wehrfritz, A. & Södereberg, L. D. 2011 Global linear and nonlinear stability of viscous confined plane wakes with co-flow. J. Fluid Mech. 675, 397434.CrossRefGoogle Scholar
50. Triantafyllou, G. S., Triantafyllou, M. S. & Chryssostomodis, C. 1986 On the formation of vortex streets behind stationary cylinders. J. Fluid Mech. 170, 461477.CrossRefGoogle Scholar
51. Triantafyllou, G. S. & Karniadakis, G. 1990 Computational reducibility of unsteady viscous flow. Phys. Fluids A 2, 653656.CrossRefGoogle Scholar
52. Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
53. Yu, M. H. & Monkewitz, P. A. 1990 The effect of non-uniform density on the absolute instability of two-dimensional inertial jets and wakes. Phys. Fluids A 2, 11751181.CrossRefGoogle Scholar
54. Xu, C. J. & Pasquetti, R. 2001 On the efficiency of semi-implicit and semi-Lagrangian spectral methods for the calculation of incompressible flows. Intl J. Numer. Meth. Fluids 35, 319340.3.0.CO;2-V>CrossRefGoogle Scholar