Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T12:13:24.798Z Has data issue: false hasContentIssue false

Influence of Bénard convection on solid–liquid interfaces

Published online by Cambridge University Press:  21 April 2006

C. Dietsche
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Reaktorbauelemente, Postfach 3640, 7500 Karlsruhe 1, Federal Republic of Germany
U. Müller
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Reaktorbauelemente, Postfach 3640, 7500 Karlsruhe 1, Federal Republic of Germany

Abstract

A laterally confined horizontal liquid layer is heated from below and cooled from above so that the single-component liquid is frozen in the upper part of the layer. When the imposed temperature difference is such that the Rayleigh number across the liquid is supercritical, there is Bénard convection in the liquid layer coupled with the dynamics of the solidification interface. Experimental results are presented for quasi-steady temperature variations at the horizontal boundaries. When the solidified layer is thick compared with the liquid layer a hysteresis loop is found for the heights of the liquid layer in a range of subcritical Rayleigh numbers. The interfacial corrugations exhibit a polygonal structure in this case. At Rayleigh numbers far above the critical value ‘bimodal patterns’ are observed with two distinct lengthscales. Finally a stability chart is given for the various interfacial patterns observed.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busse, F. H. & Whitehead, J. A. 1971 Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid Mech. 47, 305320.Google Scholar
Carey, V. P. & Gebhart, B. 1982 Transport near a vertical ice surface melting in saline water: experiments at low salinities. J. Fluid Mech. 117, 403423.Google Scholar
Chalmers, B. 1964 Principles of Solidification. Wiley.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Davis, S. H. 1967 Convection in a box: linear theory. J. Fluid Mech. 30, 465478.Google Scholar
Davis, S. H., Müller, U. & Dietsche, C. 1984 Pattern selection in single-component systems coupling Bénard convection and solidification. J. Fluid Mech. 144, 133157.Google Scholar
Diaz, L. A. & Viskanta, R. 1984 Visualization of the solid-liquid interface morphology formed by natural convection during melting of a solid from below. Intl Comm. Heat Mass Transfer 11, 3543.Google Scholar
Dietsche, C. 1984 Einfluß der Bénard-Konvektion auf Gefrierflächen. Dissertation, Universität Karlsruhe, West Germany (KfK-Rep. 3724).
Farhadieh, R. & Tankin, R. S. 1975 A study of the freezing of sea water. J. Fluid Mech. 71, 293304.Google Scholar
Frick, H. & Clever, R. M. 1980 Einfluß der Seitenwände auf das Einsetzen der Konvektion in einer horizontalen Flüssigkeitsschicht. Z. angew. Math. Phys. 31, 502513.Google Scholar
Hauf, W. & Grigull, U. 1970 Optical methods in heat transfer. Adv. Heat Transfer 6, 133366.Google Scholar
Howard, L. N. 1964 Convection at high Rayleigh number. In Proc. 11th Intl Congr. of Applied Mechanics, München (ed. H. Görtler), pp. 11091115. Springer.
Huppert, H. E. & Turner, J. S. 1978 On melting icebergs. Nature 271, 4648.Google Scholar
Jakeman, E. & Hurle, D. T. J. 1972 Thermal oscillations and their effect on solidification processes. Rev. Phys. Tech. 3, 330.Google Scholar
Koster, J. N. 1983 Interferometric investigation of convection in plexiglas boxes. Exp. Fluids 1, 121128.Google Scholar
Marshall, R. & Dietsche, C. 1982 Comparison of paraffin wax storage subsystem models using liquid heat transfer media. Solar Energy 29, 503511.Google Scholar
Müller, G., Schmidt, E. & Kyr, P. 1980 Investigation of convection in melts and crystal growth under large inertial accelerations. J. Cryst. Growth 49, 387395.Google Scholar
Oertel, H. & Bühler, K. 1978 A special differential interferometer used for heat convection investigations. Intl J. Heat Mass Transfer 21, 11111115.Google Scholar
Saitoh, T. & Hirose, K. 1982 High Rayleigh number solutions to problems of latent heat thermal energy storage in a horizontal cylinder capsule. Trans. ASME C: J. Heat Transfer 104, 545553.Google Scholar
Stork, K. & Müller, U. 1972 Convection in boxes: experiments. J. Fluid Mech. 54, 599611.Google Scholar
Turner, W. D. & Siman-Tov, M. 1971 Heating 3 – An IBM 360 heat conduction program. ORNL-TM-3208.