Hostname: page-component-7b9c58cd5d-g9frx Total loading time: 0 Render date: 2025-03-14T16:50:08.659Z Has data issue: false hasContentIssue false

Implicit large eddy simulations of three-dimensional turbulent transonic buffet on wide-span infinite wings

Published online by Cambridge University Press:  14 March 2025

David J. Lusher*
Affiliation:
Chofu Aerospace Center, Japan Aerospace Exploration Agency (JAXA), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182–8522, Japan
Andrea Sansica
Affiliation:
Chofu Aerospace Center, Japan Aerospace Exploration Agency (JAXA), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182–8522, Japan
Atsushi Hashimoto
Affiliation:
Chofu Aerospace Center, Japan Aerospace Exploration Agency (JAXA), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182–8522, Japan
*
Corresponding author: David J. Lusher, [email protected]

Abstract

Turbulent transonic buffet is an aerodynamic instability causing periodic (albeit, often irregular) oscillations of lift/drag in aerospace applications. Involving complex coupling between inviscid and viscous effects, buffet is characterised by shock wave oscillations and flow separation/reattachment. Previous studies have identified both two-dimensional (2-D) chordwise shock-oscillation and three-dimensional (3-D) buffet-/stall-cell modes. While the 2-D instability has been studied extensively, investigations of 3-D buffet have been limited to only low-fidelity simulations or experiments. Due to computational cost, almost all high-fidelity studies to date have been limited to narrow span-widths around 5 % of aerofoil chord length (aspect ratio, ), which is insufficiently wide to observe large-scale three-dimensionality. In this work, high-fidelity simulations are performed up to , on an infinite unswept NASA Common Research Model (CRM) wing profile at $Re=5\times 10^{5}$. At , intermittent 3-D separation bubbles are observed at buffet conditions. While previous Reynolds-averaged Navier–Stokes (RANS)/stability-based studies predict quasi-simultaneous onset of 2-D- and 3-D-buffet, a case that remains essentially 2-D is identified here. Strongest three-dimensionality was observed near low-lift phases of the buffet cycle at maximum flow separation, reverting to essentially 2-D behaviour during high-lift phases. Buffet was found to become 3-D when extensive mean flow separation was present. At , multiple 3-D separation bubbles form in a spanwise wavelength range $\lambda =1c$ to $1.5c$. Spectral proper orthogonal decomposition (SPOD) was applied to analyse the spatio/temporal structure of 3-D buffet-cells. In addition to the 2-D chordwise shock-oscillation mode (Strouhal number $St \approx 0.07-0.1$), 3-D modal structures were observed at the shock wave/boundary layer interaction at $St \approx 0.002-0.004$.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aihara, A. & Kawai, S. 2023 Effects of spanwise domain size on LES-Predicted aerodynamics of stalled airfoil. AIAA J. 61 (3), 14401446.CrossRefGoogle Scholar
Bhagatwala, A. & Lele, S.K. 2009 A modified artificial viscosity approach for compressible turbulence simulations. J. Comput. Phys. 228 (14), 49654969.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.CrossRefGoogle Scholar
Borges, R., Carmona, M., Costa, B. & Don, W.S. 2008 An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227 (6), 31913211.CrossRefGoogle Scholar
Brunet, V. & Deck, S. 2008 Zonal-detached eddy simulation of transonic buffet on a civil aircraft type configuration, In Advances in Hybrid RANS-LES Modelling: Papers contributed to the 2007 Symposium of Hybrid RANS-LES Methods, pp. 182191. Springer, Corfu, Greece, 2007-06-17.Google Scholar
Carpenter, M.H. & Kennedy, C.A. 1994 Fourth-order 2N-storage Runge-Kutta schemes. NASA Langley Research Center.Google Scholar
Chapelier, J.-B. et al. 2024 Comparison of high-order numerical methodologies for the simulation of the supersonic Taylor-Green vortex flow. Phys. Fluids 36 (5), 055146.CrossRefGoogle Scholar
Coppola, G., Capuano, F., Pirozzoli, S. & de Luca, L. 2019 Numerically stable formulations of convective terms for turbulent compressible flows. J. Comput. Phys. 382, 86104.CrossRefGoogle Scholar
Crouch, J.D., Garbaruk, A., Magidov, D. & Travin, A. 2009 Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357369.CrossRefGoogle Scholar
Crouch, J.D., Garbaruk, A. & Strelets, M. 2019 Global instability in the onset of transonic-wing buffet. J. Fluid Mech. 881, 322.CrossRefGoogle Scholar
Dandois, J., Mary, I. & Brion, V. 2018 Large-eddy simulation of laminar transonic buffet. J. Fluid Mech. 850, 156178.CrossRefGoogle Scholar
Deck, S. 2005 Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43 (7), 15561566.CrossRefGoogle Scholar
Dolling, D. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.CrossRefGoogle Scholar
Eagle, W.E. & Driscoll, J.F. 2014 Shock wave–boundary layer interactions in rectangular inlets: three-dimensional separation topology and critical points. J. Fluid Mech. 756, 328353.CrossRefGoogle Scholar
Fu, L. 2023 Review of the high-order TENO schemes for compressible gas dynamics and turbulence. Arch. Comput. Method. Engng 30 (4), 24932526.CrossRefGoogle Scholar
Fujino, K. & Suzuki, K. 2024 Three-dimensional simulations of low-reynolds-number buffet around an unswept high-subsonic and transonic wing. In AIAA AVIATION FORUM AND ASCEND 2024, pp. 4390.Google Scholar
Fukushima, Y. & Kawai, S. 2018 Wall-modeled large-eddy simulation of transonic airfoil buffet at high reynolds number. AIAA J. 56 (6), 118.CrossRefGoogle Scholar
Garnier, E. & Deck, S. 2013 Large-eddy simulation of transonic buffet over a supercritical airfoil. Turbulence and Interactions. (ed. Deville, M., Le, T.-H. and Sagaut, P. ), Springer.Google Scholar
Garnier, E., Mossi, M., Sagaut, P., Comte, P. & Deville, M. 1999 On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys. 153 (2), 273311.CrossRefGoogle Scholar
Giannelis, N.F., Vio, G.A. & Levinski, O. 2017 A review of recent developments in the understanding of transonic shock buffet. Prog. Aerosp. Sci. 92, 3984.CrossRefGoogle Scholar
Grinstein, F.F., Margolin, L.G. & Rider, W.J. 2007 Implicit Large Eddy Simulation. Vol. 10. Cambridge University Press Cambridge.CrossRefGoogle Scholar
Hamzehloo, A., Lusher, D.J., Laizet, S. & Sandham, N.D. 2021 On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows. Intl J. Numer. Meth. Fl. 93 (1), 176196.CrossRefGoogle Scholar
Hamzehloo, A., Lusher, D.J. & Sandham, N.D. 2023 Direct numerical simulations and spectral proper orthogonal decomposition analysis of shocklet-containing turbulent channel counter-flows. Intl J. Heat Fluid Fl. 104, 109229.CrossRefGoogle Scholar
Hartmann, A., Feldhusen, A. & Shroder, W. 2013 On the interaction of shock waves and sound waves in transonic buffet flow. AIAA J. 28 (942), 026101.Google Scholar
Hashimoto, A., Ishida, T., Aoyama, T., Ohmichi, Y., Yamamoto, T. & Hayashi, K. 2018 Current progress in unsteady transonic buffet simulation with unstructured grid CFD code. In 2018 AIAA Aerospace Sciences Meeting, p. 0788. AIAA.CrossRefGoogle Scholar
Hashimoto, A., Murakami, K., Aoyama, T., Ishiko, K., Hishida, M., Sakashita, M. & Lahur, P. 2012 Toward the fastest unstructured CFD code ‘FaSTAR’. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA 2012), p. 1075. AIAA.CrossRefGoogle Scholar
He, W. & Timme, S. 2021 Triglobal infinite-wing shock-buffet study. J. Fluid Mech. 925, A27.CrossRefGoogle Scholar
Houtman, J., Timme, S. & Sharma, A. 2023 Resolvent analysis of a finite wing in transonic flow. Flow 3, E14.CrossRefGoogle Scholar
Iovnovich, M. & Raveh, D.E. 2015 Numerical study of shock buffet on three-dimensional wings. AIAA J. 53 (2), 449463.CrossRefGoogle Scholar
Ishida, T., Ishiko, K., Hashimoto, A., Aoyama, T. & Takekawa, K. 2016 Transonic buffet simulation over supercritical airfoil by unsteady-faSTAR code. In 54th AIAA Aerospace Sciences Meeting, p. 1310. AIAA.Google Scholar
Iwatani, Y., Asada, H., Yeh, C.-A., Taira, K. & Kawai, S. 2023 Identifying the self-sustaining mechanisms of transonic airfoil buffet with resolvent analysis. AIAA J. 61 (6), 24002411.CrossRefGoogle Scholar
Jacquin, L., Molton, P., Deck, S., Maury, B. & Soulevant, D. 2009 Experimental study of shock oscillation over a transonic supercritical profile. AIAA J. 47 (9), 19851994.CrossRefGoogle Scholar
Lee, B.H.K. 1990 Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28 (5), 942944.CrossRefGoogle Scholar
Lee, B.H.K. 2001 Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37 (2), 147196.CrossRefGoogle Scholar
Lusher, D.J., Zauner, M., Sansica, A. & Hashimoto, A. 2023 Automatic code-generation to enable high-fidelity simulations of multi-block airfoils on GPUs. In AIAA Scitech 2023 Forum, AIAA SciTech Forum, p. 1222. AIAA.Google Scholar
Lusher, D.J. & Coleman, G.N. 2022 Numerical study of compressible wall-bounded turbulence - the effect of thermal wall conditions on the turbulent Prandtl number in the low-supersonic regime. Intl J. Comput. Fluid Dyn. 36 (9), 797815.CrossRefGoogle Scholar
Lusher, D.J., Jammy, S.P. & Sandham, N.D. 2018 Shock-wave/boundary-layer interactions in the automatic source-code generation framework OpenSBLI. Comput. Fluids 173, 1721.CrossRefGoogle Scholar
Lusher, D.J., Jammy, S.P. & Sandham, N.D. 2021 OpenSBLI: automated code-generation for heterogeneous computing architectures applied to compressible fluid dynamics on structured grids. Comput. Phys. Commun. 267, 108063.CrossRefGoogle Scholar
Lusher, D.J. & Sandham, N.D. 2020 a The effect of flow confinement on laminar shock-wave/boundary-layer interactions. J. Fluid Mech. 897, A18.CrossRefGoogle Scholar
Lusher, D.J. & Sandham, N.D. 2020 b Shock-Wave/Boundary-Layer Interactions in Transitional Rectangular Duct Flows. Flow, Turbulence and Combustion.CrossRefGoogle Scholar
Lusher, D.J. & Sandham, N.D. 2021 Assessment of low-dissipative shock-capturing schemes for the compressible taylor–green vortex. AIAA J. 59 (2), 533545.CrossRefGoogle Scholar
Lusher, D.J., Sansica, A. & Hashimoto, A. 2024 Effect of tripping and domain width on transonic buffet on periodic NASA-CRM airfoils. AIAA J. 62 (11), 44114430.Google Scholar
Lusher, D.J., Sansica, A., Sandham, N.D., Meng, J., Siklósi, B. & Hashimoto, A. 2025 OpenSBLI v3.0: high-fidelity multi-block transonic aerofoil CFD simulations using domain specific languages on GPUs. Comput. Phys. Commun. 307, 109406.CrossRefGoogle Scholar
Masini, L., Timme, S. & Peace, A.J. 2020 Analysis of a civil aircraft wing transonic shock buffet experiment. J. Fluid Mech. 884, A1.CrossRefGoogle Scholar
Mavriplis, D.J. 2003 Revisiting the least-squares procedure for gradient reconstruction on unstructured. In 16th AIAA Computational Fluid Dynamics Conference, AIAA paper 2003, p. 3986. AIAA.CrossRefGoogle Scholar
Memmolo, A., Bernardini, M. & Pirozzoli, S. 2018 Scrutiny of buffet mechanisms in transonic flow. Intl J. Numer. Meth. Heat Fluid Flow 28 (5), 10311046.CrossRefGoogle Scholar
Mengaldo, G. & Maulik, R. 2021 PySPOD: a python package for spectral proper orthogonal decomposition (SPOD). Journal of Open Source Software 6 (60), 2862.CrossRefGoogle Scholar
Moise, P., Zauner, M. & Sandham, N.D. 2022 Large-eddy simulations and modal reconstruction of laminar transonic buffet. J. Fluid Mech. 944, A16.CrossRefGoogle Scholar
Moise, P., Zauner, M., Sandham, N.D., Timme, S. & He, W. 2023 Transonic buffet characteristics under conditions of free and forced transition. AIAA J. 61 (3), 10611076.CrossRefGoogle Scholar
NASA-LaRC 2012 Crm.65.airfoil sections [online], Available: https://commonresearchmodel.larc.nasa. gov/crm-65-airfoil-sections.Google Scholar
Nguyen, N.C., Terrana, S. & Peraire, J. 2022 Large-eddy simulation of transonic buffet using matrix-free discontinuous galerkin method. AIAA J. 60 (5), 30603077.CrossRefGoogle Scholar
Obayashi, S. & Guruswamy, G.P. 1995 Convergence acceleration of an aeroelastic Navier–Stokes solver. AIAA J. 33 (6), 11341141.CrossRefGoogle Scholar
Ohmichi, Y., Ishida, T. & Hashimoto, A. 2018 Modal decomposition analysis of three-dimensional transonic buffet phenomenon on a swept wing. AIAA J. 56 (10), 39383950.CrossRefGoogle Scholar
Paladini, E., Beneddine, S., Dandois, J., Sipp, D. & Robinet, J.-C. 2019 Transonic buffet instability: from two-dimensional airfoils to three-dimensional swept wings. Phys. Rev. Fluids 4 (10), 103906.CrossRefGoogle Scholar
Plante, F., Dandois, J., Beneddine, S., Laurendeau, E. & Sipp, D. 2021 Link between subsonic stall and transonic buffet on swept and unswept wings: from global stability analysis to nonlinear dynamics. J. Fluid Mech. 908, A16.CrossRefGoogle Scholar
Plante, F., Dandois, J. & Laurendeau, E. 2020 Similarities between cellular patterns occurring in transonic buffet and subsonic stall. AIAA J. 58 (1), 7184.CrossRefGoogle Scholar
Plante, F. 2020 Towards understanding stall cells and transonic buffet cells. PhD thesis, Ecole Polytechnique, Montreal (Canada).Google Scholar
Poplinger, L., Raveh, D.E. & Dowell, E.H. 2019 Modal analysis of transonic shock buffet on 2d airfoil. AIAA J. 57 (7), 28512866.CrossRefGoogle Scholar
Reguly, I.Z., Mudalige, G.R. & Giles, M.B. 2018 Loop tiling in large-scale stencil codes at run-time with OPS. IEEE T. Parall. Distr. 29 (4), 873886.CrossRefGoogle Scholar
Reguly, I.Z., Mudalige, G.R., Giles, M.B., Curran, D. & McIntosh-Smith, S. 2014 The OPS domain specific abstraction for multi-block structured grid computations. In WOLFHPC 14,, vol. 10, pp. 5867. IEEE Press.Google Scholar
Ritos, K., Kokkinakis, I.W. & Drikakis, D. 2018 Performance of high-order implicit large eddy simulations. Comput. Fluids 173, 307312.CrossRefGoogle Scholar
Rodríguez, D. & Theofilis, V. 2011 On the birth of stall cells on airfoils. Theor. Comput. Fluid Dyn. 25 (1-4), 105117.CrossRefGoogle Scholar
Sansica, A., Loiseau, J.-Ch, Kanamori, M., Hashimoto, A. & Robinet, J.-C. 2022 System identification of two-dimensional transonic buffet. AIAA J. 60 (5), 30903106.CrossRefGoogle Scholar
Sansica, A. & Hashimoto, A. 2023 Global stability analysis of full-aircraft transonic buffet at flight reynolds numbers. AIAA J. 61 (10), 44374455.CrossRefGoogle Scholar
Sartor, F., Mettot, C. & Sipp, D. 2015 Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J. 53 (7), 1980–1933.CrossRefGoogle Scholar
Sartor, F. & Timme, S. 2017 Delayed detached–eddy simulation of shock buffet on half wing–body configuration. AIAA J. 55 (4), 12301240.CrossRefGoogle Scholar
Sharov, D. & Nakahashi, K. 1998 Reordering of hybrid unstructured grids for lower-upper symmetric gauss-seidel computations. AIAA J. 36 (3), 484486.CrossRefGoogle Scholar
Shur, M.L., Strelets, M.K., Travin, A.K. & Spalart, P.R. 2000 Turbulence modeling in rotating and curved channels: assessing the spalart-shur correction. AIAA J. 38 (5), 784792.CrossRefGoogle Scholar
Song, H., Wong, M.L., Ghate, A.S. & Lele, S.K. 2024 Numerical study of transonic laminar shock buffet on the OALT25 airfoil. In AIAA SciTech 2024 Forum, p. 2148. AIAA.Google Scholar
Spalart, P.R. & Allmaras, S.R. 1992 A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, p. 439. AIAA.CrossRefGoogle Scholar
Sugioka, Y., Koike, S., Nakakita, K., Numata, D., Nonomura, T. & Asai, K. 2018 Experimental analysis of transonic buffet on a 3D swept wing using fast-response pressure-sensitive paint. Exp. Fluids 59 (108), 120.CrossRefGoogle Scholar
Sugioka, Y., Kouchi, T. & Koike, S. 2022 Experimental comparison of shock buffet on unswept and 10-deg swept wings. Exp. Fluids 63 (8), 132.CrossRefGoogle Scholar
Sugioka, Y., Nakakita, K., Koike, S., Nakajima, T., Nonomura, T. & Asai, K. 2021 Characteristic unsteady pressure field on a civil aircraft wing related to the onset of transonic buffet. Exp. Fluids 62 (62), 20.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B. J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Tamaki, Y. & Kawai, S. 2024 Wall-modeled large-eddy simulation of transonic buffet over NASA-CRM using FFVHC-ACE. AIAA J. 0 (0),116.CrossRefGoogle Scholar
Thiery, M. & Coustols, E. 2006 Numerical prediction of shock induced oscillations over a 2D airfoil: influence of turbulence modelling and test section walls. Intl J. Heat Fluid Flow 27 (4), 661670.CrossRefGoogle Scholar
Timme, S. 2020 Global instability of wing shock-buffet onset. J. Fluid Mech. 885, A37.CrossRefGoogle Scholar
Tinoco, E.N. et al. 2018 Summary of data from the sixth AIAA CFD drag prediction workshop: CRM Cases 2 to 5. J. Aircraft 55 (4), 13521379.CrossRefGoogle Scholar
Tinoco, E.N. 2019 An evaluation and recommendations for further CFD research based on the NASA common research model (CRM) analysis from the AIAA drag prediction workshop (DPW) series, NASA/CR-2019-220284, pp. 1317.Google Scholar
Tobak, M. & Peake, D.J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14 (1), 6185.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Visbal, M.R. & Gordnier, R. 2000 A high-order flow solver for deforming and moving meshes. In Fluids 2000 Conference and Exhibit, AIAA Paper 2000, p. 2619. AIAA.CrossRefGoogle Scholar
Yee, H.C., Sandham, N.D. & Djomehri, M.J. 1999 Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150 (1), 199238.CrossRefGoogle Scholar
Yee, H.C. & Sjögreen, B. 2018 Recent developments in accuracy and stability improvement of nonlinear filter methods for DNS and LES of compressible flows. Comput. Fluids 169, 331348.CrossRefGoogle Scholar
Zauner, M., Moise, P. & Sandham, N.D. 2022 On the co-existence of transonic buffet and separation-bubble modes for the oalt25 laminar-flow wing section. Flow, Turbulence and Combustion 110 (4), 10231057.CrossRefGoogle Scholar
Zauner, M. & Sandham, N.D. 2020 Wide domain simulations of flow over an unswept laminar wing section undergoing transonic buffet. Phys. Rev. Fluids 5 (8), 083903.CrossRefGoogle Scholar