Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Chillà, F.
Rastello, M.
Chaumat, S.
and
Castaing, B.
2004.
Ultimate regime in Rayleigh–Bénard convection: The role of plates.
Physics of Fluids,
Vol. 16,
Issue. 7,
p.
2452.
Goldstein, R.J.
Eckert, E.R.G.
Ibele, W.E.
Patankar, S.V.
Simon, T.W.
Kuehn, T.H.
Strykowski, P.J.
Tamma, K.K.
Bar-Cohen, A.
Heberlein, J.V.R.
Davidson, J.H.
Bischof, J.
Kulacki, F.A.
Kortshagen, U.
Garrick, S.
and
Srinivasan, V.
2005.
Heat transfer—a review of 2002 literature.
International Journal of Heat and Mass Transfer,
Vol. 48,
Issue. 5,
p.
819.
Cerbino, Roberto
Mazzoni, Stefano
Vailati, Alberto
and
Giglio, Marzio
2005.
Scaling Behavior for the Onset of Convection in a Colloidal Suspension.
Physical Review Letters,
Vol. 94,
Issue. 6,
Kenjereš, S.
and
Hanjalić, K.
2006.
LES, T-RANS and hybrid simulations of thermal convection at high Ra numbers.
International Journal of Heat and Fluid Flow,
Vol. 27,
Issue. 5,
p.
800.
Sun, Z.F.
and
Yu, K.T.
2006.
Rayleigh–Bénard–Marangoni Cellular Convection.
Chemical Engineering Research and Design,
Vol. 84,
Issue. 3,
p.
185.
DU PUITS, R.
RESAGK, C.
TILGNER, A.
BUSSE, F. H.
and
THESS, A.
2007.
Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection.
Journal of Fluid Mechanics,
Vol. 572,
Issue. ,
p.
231.
VERZICCO, R.
and
SREENIVASAN, K. R.
2008.
A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux.
Journal of Fluid Mechanics,
Vol. 595,
Issue. ,
p.
203.
Ahlers, Guenter
Grossmann, Siegfried
and
Lohse, Detlef
2009.
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection.
Reviews of Modern Physics,
Vol. 81,
Issue. 2,
p.
503.
Palymskii, I. B.
2011.
Simulation of complex regimes of Rayleigh-Benard convection.
Numerical Analysis and Applications,
Vol. 4,
Issue. 2,
p.
145.
He, Xiaozhou
Funfschilling, Denis
Bodenschatz, Eberhard
and
Ahlers, Guenter
2012.
Heat transport by turbulent Rayleigh–Bénard convection forPr≃ 0.8 and 4 × 1011≲Ra≲ 2 × 1014: ultimate-state transition for aspect ratio Γ = 1.00.
New Journal of Physics,
Vol. 14,
Issue. 6,
p.
063030.
Chillà, F.
and
Schumacher, J.
2012.
New perspectives in turbulent Rayleigh-Bénard convection.
The European Physical Journal E,
Vol. 35,
Issue. 7,
Ahlers, Guenter
He, Xiaozhou
Funfschilling, Denis
and
Bodenschatz, Eberhard
2012.
Heat transport by turbulent Rayleigh–Bénard convection forPr≃ 0.8 and 3 × 1012≲Ra≲ 1015: aspect ratio Γ = 0.50.
New Journal of Physics,
Vol. 14,
Issue. 10,
p.
103012.
Zhou, Quan
Liu, Bo-Fang
Li, Chun-Mei
and
Zhong, Bao-Chang
2012.
Aspect ratio dependence of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells.
Journal of Fluid Mechanics,
Vol. 710,
Issue. ,
p.
260.
Stevens, Richard J. A. M.
van der Poel, Erwin P.
Grossmann, Siegfried
and
Lohse, Detlef
2013.
The unifying theory of scaling in thermal convection: the updated prefactors.
Journal of Fluid Mechanics,
Vol. 730,
Issue. ,
p.
295.
van der Poel, Erwin P.
Stevens, Richard J. A. M.
and
Lohse, Detlef
2013.
Comparison between two- and three-dimensional Rayleigh–Bénard convection.
Journal of Fluid Mechanics,
Vol. 736,
Issue. ,
p.
177.
Puits, Ronald du
Resagk, Christian
and
Thess, André
2013.
Thermal boundary layers in turbulent Rayleigh–Bénard convection at aspect ratios between 1 and 9.
New Journal of Physics,
Vol. 15,
Issue. 1,
p.
013040.
Urban, Pavel
Hanzelka, Pavel
Musilová, Věra
Králík, Tomáš
Mantia, Marco La
Srnka, Aleš
and
Skrbek, Ladislav
2014.
Heat transfer in cryogenic helium gas by turbulent Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1.
New Journal of Physics,
Vol. 16,
Issue. 5,
p.
053042.
Stevens, Richard J. A. M.
Lohse, Detlef
and
Verzicco, Roberto
2014.
Sidewall effects in Rayleigh–Bénard convection.
Journal of Fluid Mechanics,
Vol. 741,
Issue. ,
p.
1.
Keene, Daniel J.
and
Goldstein, R. J.
2015.
Thermal Convection in Porous Media at High Rayleigh Numbers.
Journal of Heat Transfer,
Vol. 137,
Issue. 3,
Zhu, Xiaojue
Phillips, Everett
Spandan, Vamsi
Donners, John
Ruetsch, Gregory
Romero, Joshua
Ostilla-Mónico, Rodolfo
Yang, Yantao
Lohse, Detlef
Verzicco, Roberto
Fatica, Massimiliano
and
Stevens, Richard J.A.M.
2018.
AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters.
Computer Physics Communications,
Vol. 229,
Issue. ,
p.
199.