Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:06:58.768Z Has data issue: false hasContentIssue false

Gravity currents of carbon dioxide with residual gas trapping in a two-layered porous medium

Published online by Cambridge University Press:  14 February 2011

TAKASHI GODA
Affiliation:
Department of Systems Innovation, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
KOZO SATO*
Affiliation:
Frontier Research Center for Energy and Resources, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
*
Email address for correspondence: [email protected]

Abstract

In the geological sequestration of carbon dioxide (CO2), residual gas trapping plays an important role in immobilizing CO2. In this study, we investigate the propagation of gravity currents with residual gas trapping in a two-layered porous medium. We first formulate a model for a constant-flux release of a relatively less dense fluid (CO2) from a point source into a porous medium bounded above by a horizontal less-permeable seal. After a constant-flux release ceases, a fraction of the released fluid remains within the porous spaces at the trailing edge because of the capillary forces. This capillary retention is formulated in a model of gravity currents of a finite-volume release in the two-layered medium. In the latter model, the plume shape at the end of the constant-flux release is used as an initial profile. Using these models sequentially, the propagation of both cross-sectional and axisymmetric currents is quantitatively examined.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acton, J. M., Huppert, H. E. & Worster, M. G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.CrossRefGoogle Scholar
Bachu, S. 2008 CO2 storage in geological media: role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 34 (2), 254273.CrossRefGoogle Scholar
Bachu, S. & Bennion, B. 2008 Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environ. Geol. 54 (8), 17071722.CrossRefGoogle Scholar
Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. & Lyle, S. 2007 Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet. Sci. Lett. 255, 164176.CrossRefGoogle Scholar
Dentz, M. & Tartakovsky, D. M. 2009 Abrupt-interface solution for carbon dioxide injection into porous media. Transp. Porous Med. 79, 1527.CrossRefGoogle Scholar
Doughty, C. 2007 Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves. Energy Convers. Manag. 48 (6), 17681781.CrossRefGoogle Scholar
Doughty, C. & Myer, L. R. 2009 Scoping calculations on leakage of CO2 in geological storage: the impact of overburden permeability, phase trapping and dissolution. In Carbon Sequestration and Its Role in the Global Carbon Cycle (ed. McPherson, B. J. & Sundquist, E. T.). pp. 217237. American Geophysical Union.CrossRefGoogle Scholar
Ennis-King, J., Preston, I. & Paterson, L. 2005 Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17 (8), 084107.CrossRefGoogle Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.CrossRefGoogle Scholar
Gunter, W. D., Wiwchar, B. & Perkins, E. H. 1997 Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Mineral. Petrol. 59 (1–2), 121140.CrossRefGoogle Scholar
Hayek, M., Mouche, E. & Mugler, C. 2009 Modeling vertical stratification of CO2 injected into a deep layered aquifer. Adv. Water Resour. 32, 450462.CrossRefGoogle Scholar
Hesse, M. A., Orr, F. M. Jr & Tchelepi, H. A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.CrossRefGoogle Scholar
Hesse, M. A., Tchelepi, H. A., Cantwell, B. J. & Orr, F. M. Jr. 2007 Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363383.CrossRefGoogle Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
Juanes, R., MacMinn, C. W. & Szulczewski, M. L. 2010 The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Med. 82 (1), 1930.CrossRefGoogle Scholar
Juanes, R., Spiteri, E. J., Orr, F. M. Jr & Blunt, M. J. 2006 Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42 (W12418), 113.CrossRefGoogle Scholar
Kochina, I. N., Mikhailov, N. N. & Filinov, M. V. 1983 Groundwater mound damping. Intl J. Engng Sci. 21 (4), 413421.CrossRefGoogle Scholar
Kumar, A., Ozah, R., Noh, M., Pope, G. A., Bryant, S., Sepehrnoori, K. & Lake, L. W. 2005 Reservoir simulation of CO2 storage in deep saline aquifers. Soc. Petrol. Engng J. 10 (3), 336348.Google Scholar
Lyle, S., Huppert, H. E., Hallworth, M., Bickle, M. & Chadwick, A. 2005 Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293302.CrossRefGoogle Scholar
MacMinn, C. W. & Juanes, R. 2009 Post-injection spreading and trapping of CO2 in saline aquifers: impact of the plume shape at the end of injection. Comput. Geosci. 13, 483491.CrossRefGoogle Scholar
Neufeld, J. A. & Huppert, H. E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353370.CrossRefGoogle Scholar
Neufeld, J. A., Vella, D. & Huppert, H. E. 2009 The effect of a fissure on storage in a porous medium. J. Fluid Mech. 639, 239259.CrossRefGoogle Scholar
Neuzil, C. M. 1994 How permeable are clays and shales?. Water Resour. Res. 30 (2), 145150.CrossRefGoogle Scholar
Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.CrossRefGoogle Scholar
Nordbotten, J. M., Celia, M. A. & Bachu, S. 2005 Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Med. 55, 339360.CrossRefGoogle Scholar
Pacala, S. & Socolow, R. 2004 Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968972.CrossRefGoogle ScholarPubMed
Press, W. H., Teukosky, S. A., Vetterling, W. T. & Flanner, B. P. 1992 Numerical Recipes in Fortran. Cambridge University Press.Google Scholar
Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.CrossRefGoogle Scholar
Pritchard, D. & Hogg, A. J. 2002 Draining viscous gravity currents in a vertical fracture. J. Fluid Mech. 459, 207216.CrossRefGoogle Scholar
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.CrossRefGoogle Scholar
Riaz, A., Hesse, M., Tchelepi, H. A. & Orr, F. M. Jr. 2006 Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.CrossRefGoogle Scholar
Suekane, T., Nobuso, T., Hirai, S. & Kiyota, M. 2008 Geological storage of carbon dioxide by residual gas and solubility trapping. Intl J. Greenh. Gas Control 2 (1), 5864.CrossRefGoogle Scholar
Vella, D. & Huppert, H. E. 2006 Gravity currents in a porous medium at an inclined plane. J. Fluid Mech. 555, 353362.CrossRefGoogle Scholar
Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.CrossRefGoogle Scholar