Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T09:19:15.060Z Has data issue: false hasContentIssue false

Fully developed MHD turbulence near critical magnetic Reynolds number

Published online by Cambridge University Press:  20 April 2006

J. Léorat
Affiliation:
Observatoire de Meudon, 92190 Meudon, France, and Université Paris VII
A. Pouquet
Affiliation:
Centre National de la Recherche Scientifique Observatoire de Nice, Nice, France
U. Frisch
Affiliation:
Centre National de la Recherche Scientifique Observatoire de Nice, Nice, France

Abstract

Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers RM where magnetic fields can be self-excited by a dynamo mechanism (as first suggested by Bevir 1973). Such flows have kinetic Reynolds numbers RV of the order of 107 and are therefore highly turbulent.

This leads us to investigate the behaviour of MHD turbulence with high RV and low magnetic Prandtl numbers. We use the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity we restrict ourselves to homogeneous and isotropic turbulence, but we do include helicity.

We obtain a critical magnetic Reynolds number RMc of the order of a few tens (non-helical case) above which magnetic energy is present. RMc is practically independent of RV (in the range 40 to 106). RMc can be considerably decreased by the presence of helicity: when the overall size of the flow L is much larger than the integral scale l0, RMc can drop below unity as suggested by an α-effect argument. When Ll0 the drop can still be substantial (factor of 6) when helicity is a maximum. We examine how the turbulence is modified when RM crosses RMc: presence of magnetic energy, decreased kinetic energy, steepening of kinetic-energy spectrum, etc.

We make no attempt to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding RMc, such as decreased turbulent heat transport. More precise information may be obtained from numerical simulations and experiments (including some in the subcritical regime).

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemany, A., Moreau, R., Sulem, P.-L. & Frisch, U. 1979 J. Méc. 18, 277.
Backus, C. E. 1958 Ann. Phys. 4, 372.
Batchelor, G. K. 1950 Proc. Roy. Soc. A 201, 405.
Bevir, M. K. 1973 J. British Nucl. Energy Soc. 12, 455.
Biermann, L. & Schlüter, A. 1951 Phys. Rev. 82, 863.
Bullard, E. C. & Gubbins, D. 1977 Geophys. Astrophys. Fluid Dyn. 8, 43.
Busse, F. H. 1978 Ann. Rev. Fluid Mech. 10, 435.
Childress, S. 1969 Théorie magnétohydrodynamique de l'effet dynamo. Dép. Méc. Fac. Sci., Paris.Google Scholar
Frisch, U., Sulem, P.-L. & Nelkin, M. 1978 J. Fluid Mech. 87, 719.
Gailitis, A. & Freiberg, Ya. 1977 Calculation of helical flux dynamo instability. Rep. Phys. Inst., Latvian Acad. Sci. Riga, U.S.S.R.Google Scholar
Gailitis, A., Freiberg, Ya. & Lielausis, O. A. 1977 On the observations of the magnetic field generation in liquid sodium flows. Rep. Phys. Inst., Latvian Acad. Sci. Riga, U.S.S.R.Google Scholar
Golitsyn, G. S. 1960 Dokl. Akad. Nauk S.S.S.R. 132, 315. (English transl. 1960 Sov. Phys. Dokl. 5, 536.)
Gubbins, D. 1973 Phil. Trans. Roy. Soc. A 274, 493.
Kolmogorov, A. N. 1941 Dokl. Akad. Nauk S.S.S.R. 32, 19.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Kraichnan, R. H. 1958 Phys. Rev. 109, 1407.
Kraichnan, R. H. 1965 Phys. Fluids 8, 1385.
Kraichnan, R. H. & Nagarajan, S. 1967 Phys. Fluids 10, 859.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 J. Fluid Mech. 68, 537.
Leith, C. E. 1971 J. Atmos. Sci. 28, 145.
Léorat, J., Pouquet, A. & Frisch, U. 1980 J. Phys. 41 (C3), 359.
Lesieur, M. & Schertzer, D. 1978 J. Méc. 17, 609.
Leslie, D. C. 1973 Developments in the Theory of Turbulence. Clarendon.
Lorenz, E. N. 1963 J. Atmos. Sci. 20, 130.
Malkus, W. V. R. 1968 Science 160, 259.
Martin, P. C. 1976 J. Phys. Coll. 37, C1.
Moffatt, H. K. 1961 J. Fluid Mech. 11, 625.
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Monin, A. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. II (ed. J. L. Lumley). Massachusetts Institute of Technology Press.
Orszag, S. A. 1970 J. Fluid Mech. 41, 363.
Orszag, S. A. 1977 Statistical theory of turbulence in fluid dynamics. In Les Houches Summer School of Theoretical Physics (eds. R. Balian & J. L. Peube). Gordon and Breach.
Orszag, S. A. & Kruskal, M. D. 1968 Phys. Fluids 11, 43.
Pekeris, C. L., Accad, Y. & Shkoller, B. 1973 Phil. Trans. Roy. Soc. A 275, 425.
Pierson, E. S. 1975 Nucl. Sci. & Engng 57, 155.
Pouquet, A. 1978 J. Fluid Mech. 88, 1.
Pouquet, A. 1980 Fully developed magnetohydrodynamic turbulence. Numerical simulation and closure techniques. Preprint Observatoire de Nice.
Pouquet, A., Frisch, U. & Léorat, J. 1976 J. Fluid Mech. 77, 321.
Pouquet, A. & Patterson, G. S. 1978 J. Fluid Mech. 85, 305.
Roberts, G. O. 1972 Phil. Trans. Roy. Soc. A 271, 411.
Rose, H. A. & Sulem, P.-L. 1978 J. Phys. 39, 461.
Ruelle, D. & Takens, F. 1971 Commun. Math. Phys. 20, 167; erratum 23, 343.
Steenbeck, M., Krause, F. & Rädler, K. H. 1966 Z. Naturforsch. A 21, 369. (English transl. in Roberts, P. H. & Stix, M. 1971 National Center for Atmos. Res. Tech. Note no. 11–60, Boulder, Colorado, U.S.A.)
Vendryes, G. A. 1977 Sci. American 236 (3), 8.
Von Neumann, J. 1949 Recent theories of turbulence. Collected Works 6, 437.Google Scholar
Zel'dovich, Ya. B. 1956 Zh. Exp. Teor. Fiz. 31, 154. (English transl. 1957 Sov. Phys. J. Exp. Theor. Phys. 4, 460.)