Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T18:35:50.451Z Has data issue: false hasContentIssue false

Frequency and damping of non-axisymmetric surface oscillations of a viscous cylindrical liquid bridge

Published online by Cambridge University Press:  29 June 2011

RANGACHARI KIDAMBI*
Affiliation:
Computational and Theoretical Fluid Dynamics Division, National Aerospace Laboratories, Bangalore 560017, India
*
Email address for correspondence: [email protected]

Abstract

We present a semi-analytic solution for the non-axisymmetric oscillations of a viscous cylindrical free-standing liquid bridge formed between two coaxial discs of radius R. Even though a streamfunction does not exist, a Helmholtz decomposition is used to obtain an analytic representation of the velocity field. An eigenvalue problem is formulated by projecting the free-surface boundary conditions onto a suitable space of test functions. This is then solved iteratively along with the dispersion relation obtained from the satisfaction of endwall boundary conditions. Extensive comparison with previous theoretical and numerical results, for a range of Reynolds number and bridge slenderness ratio, shows very good agreement in most cases. The present solution generalises that of Tsamopoulos, Chen & Borkar (J. Fluid Mech., vol. 235, 1992, p. 579), which employed a streamfunction formulation and was for the axisymmetric case.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, H. F. 1982 Coupled oscillations of a solidly rotating liquid bridge. Acta Astron. 9, 547563.CrossRefGoogle Scholar
Borkar, A. & Tsamopoulos, J. 1991 Boundary layer analysis of the dynamics of axisymmetric capillary bridges. Phys. Fluids A 3, 28662874.CrossRefGoogle Scholar
Demin, V. A. 2008 Problem of the free oscillations of a capillary bridge. Fluid Dyn. 43, 524532.CrossRefGoogle Scholar
Dold, P., Benz, W., Croll, A., Lyubimov, D., Lyubimova, T. & Skuridin, R. 2001 Vibration controlled convection – preparation and perspective of the Maxus 4 experiment. Acta Astronaut. 48 (5–12), 639646.CrossRefGoogle Scholar
Higuera, M., Nicolás, J. A. & Vega, J. M. 1994 Linear oscillations of weakly dissipative axisymmetric liquid bridges. Phys. Fluids A 6, 438450.CrossRefGoogle Scholar
Higuera, M. & Nicolás, J. A. 1997 Linear nonaxisymmetric oscillations of nearly inviscid liquid bridges. Phys. Fluids 9 (2), 276285.CrossRefGoogle Scholar
Howell, D. R., Buhrow, B., Heath, T., McKenna, C., Hwang, W. & Schatz, M. F. 2000 Measurements of surface-wave damping in a container. Phys. Fluids 12 (2), 322326.CrossRefGoogle Scholar
Joseph, D. D., Sturges, L. D. & Warner, W. H. 1982 Convergence of biorthogonal series of biharmonic eigenfunctions by the method of Titchmarsh. Arch. Rat. Mech. Anal. 78, 223274.Google Scholar
Kidambi, R. 2007 Oscillations of a viscous free surface with a pinned contact line. Fluid Dyn. Res. 39, 121138.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Lyubimov, D. V., Lyubimova, T. P. & Roux, B. 1997 Mechanisms of vibrational control of heat transfer in a liquid bridge. Int. J. Heat Mass Transfer 40 (7), 40314042.CrossRefGoogle Scholar
Meseguer, J., Slobozhanin, L. A. & Perales, J. M. 1995 A review on the stability of liquid bridges. Adv. Space Res. 16 (7), 514.CrossRefGoogle Scholar
Mollot, D. J., Tsamopoulos, J., Chen, T-Y. & Ashgriz, N. 1993 Nonlinear dynamics of capillary liquid bridges: experiments. J. Fluid Mech. 255, 411435.CrossRefGoogle Scholar
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. Part 2. McGraw-Hill.Google Scholar
Nicolás, J. A. & Vega, J. M., 2000 Linear oscillations of axisymmetric viscous liquid bridges. Z. Agnew. Math. Phys. 51, 701731.CrossRefGoogle Scholar
Preziosi, L., Chen, K. & Joseph, D. D. 1989 Lubricated pipelining: stability of core-annular flow. J. Fluid Mech. 201, 323356.CrossRefGoogle Scholar
Rayleigh, Lord 1945 The Theory of Sound, vol 2, pp. 351355. Dover.Google Scholar
Sanz, A. 1985 The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 156, 101140.CrossRefGoogle Scholar
Sanz, A. & Diez, J. L. 1989 Non-axisymmetric oscillations of liquid bridges. J. Fluid Mech. 205, 503521.CrossRefGoogle Scholar
Shankar, P. N. 2007 Slow Viscous Flows: Qualitative Features and Quantitative Analysis Using Complex Eigenfunction Expansions. Imperial College Press.CrossRefGoogle Scholar
Smith, R. C. T. 1952 The bending of a semi-infinite strip. Austral. J. Sci. Res. 5, 227237.Google Scholar
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. Roy. Soc. Lond. A 150, 322337.Google Scholar
Tsamopoulos, J., Chen, T.-Y. & Borkar, A. 1992 Viscous oscillations of capillary bridges. J. Fluid Mech. 235, 579609.CrossRefGoogle Scholar
Vega, E. J. & Montanero, J. M. 2009 Damping of linear oscillations in axisymmetric liquid bridges. Phys. Fluids 21, 092101.CrossRefGoogle Scholar
Wei, W., Thiessen, D. B. & Marston, P. L. 2005 Enhanced damping of capillary bridge oscillations using velocity feedback. Phys. Fluids 17, 032105.CrossRefGoogle Scholar
Yoo, J. Y. & Joseph, D. D. 1978 Stokes flow in a trench between concentric cylinders. SIAM J. Appl. Math. 34, 247285.CrossRefGoogle Scholar