Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T18:33:21.519Z Has data issue: false hasContentIssue false

Flow of buoyant granular materials along a free surface

Published online by Cambridge University Press:  04 June 2018

Zhong Zheng*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK BP Institute, University of Cambridge, Cambridge CB3 0EZ, UK Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK
Herbert E. Huppert
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
Nathalie M. Vriend
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
Jerome A. Neufeld
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK BP Institute, University of Cambridge, Cambridge CB3 0EZ, UK Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK
P. F. Linden
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
*
Email address for correspondence: [email protected]

Abstract

We study experimentally the flow of light granular material along the free surface of a liquid of greater density. Despite a rich set of related geophysical and environmental phenomena, such as the spreading of calved ice, volcanic ash, debris and industrial wastes, there are few previous studies on this topic. We conduct a series of lock-release experiments of buoyant spherical beads into a rectangular tank initially filled with either fresh or salt water, and record the time evolution of the interface shape and the front location of the current of beads. We find that following the release of the lock the front location obeys a power-law behaviour during an intermediate time period before the nose of beads reaches a maximum runout distance within a finite time. We investigate the dependence of the scaling exponent and runout distance on the total amount of beads, the initial lock length, and the properties of the liquid that fills the tank in the experiments. Scaling arguments are provided to collapse the experimental data into universal curves, which can be used to describe the front dynamics of buoyant granular flows with different size and buoyancy effects and initial lock aspect ratios.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, J. M., Huppert, H. E. & Worster, M. G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.Google Scholar
Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.Google Scholar
Bonnecaze, R. T., Hallworth, M. A., Huppert, H. E. & Lister, J. R. 1995 Axisymmetric particle-driven gravity currents. J. Fluid Mech. 294, 93121.CrossRefGoogle Scholar
Bonnecaze, R. T., Huppert, H. E. & Lister, J. R. 1993 Particle-driven gravity currents. J. Fluid Mech. 250, 339369.Google Scholar
Carazzo, G. & Jellinek, A. M. 2012 A new view of the dynamics, stability and longevity of volcanic clouds. Earth Planet. Sci. Lett. 325, 3951.CrossRefGoogle Scholar
Dalziel, S. B.2005 DigiFlow user guide. Tech. Rep. Department of Applied Mathematics and Theoretical Physics, University of Cambridge.Google Scholar
de Rooij, F., Linden, P. F. & Dalziel, S. B. 1999 Saline and particle-driven interfacial intrusions. J. Fluid Mech. 389, 303334.Google Scholar
du Pont, S. C. C., Gondret, P., Perrin, B. & Rabaud, M. 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90, 044301.Google Scholar
Hallworth, M. A. & Huppert, H. E. 1998 Abrupt transitions in high-concentration, particle-driven gravity currents. Phys. Fluids 10, 10831087.Google Scholar
Holyer, J. Y. & Huppert, H. E. 1980 Gravity currents entering a two-layer fluid. J. Fluid Mech. 100, 739767.CrossRefGoogle Scholar
Hoult, D. 1972 Oil spreading in the sea. Annu. Rev. Fluid Mech. 4, 341368.Google Scholar
Lajeunesse, E., Mangeney-Castelnau, A. & Vilotte, J. 2004 Spreading of a granular mass on a horizontal plane. Phys. Fluids 16, 23712381.Google Scholar
Lajeunesse, E., Monnier, J. B. & Homsy, G. M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17, 103302.Google Scholar
Larrieu, E., Staron, L. & Hinch, E. J. 2006 Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259270.CrossRefGoogle Scholar
Lister, J. R. & Kerr, R. C. 1989 The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface. J. Fluid Mech. 203, 215249.Google Scholar
Lube, G., Huppert, H. E., Sparks, R. S. J. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301.Google ScholarPubMed
Lube, G., Huppert, H. E., Sparks, R. S. J. & Hallworth, M. A. 2004 Axisymmetric collapse of granular columns. J. Fluid Mech. 508, 175199.Google Scholar
Maurer, B. D., Bolster, D. T. & Linden, P. F. 2010 Intrusive gravity currents between two stably stratified fluids. J. Fluid Mech. 647, 5369.CrossRefGoogle Scholar
Maxworthy, T., Leilich, J., Simpson, J. E. & Meiburg, E. H. 2002 The propagation of a gravity current into a linearly stratified fluid. J. Fluid Mech. 453, 371394.Google Scholar
Pailha, M., Nicolas, M. & Pouliquen, O. 2008 Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 111701.Google Scholar
Pailha, M. & Pouliquen, O. 2009 A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115135.Google Scholar
Pegler, S. S. & Worster, M. G. 2013 An experimental and theoretical study of the dynamics of grounding lines. J. Fluid Mech. 728, 528.CrossRefGoogle Scholar
Pouliquen, O. & Hutter, K. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.Google Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301.Google Scholar
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.Google Scholar
Simpson, J. E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 14, 213234.Google Scholar
Staron, L. & Hinch, E. J. 2005 Discrete simulation of the collapse of granular columns. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Staron, L. & Hinch, E. J. 2007 The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matt. 9, 205217.CrossRefGoogle Scholar
Thompson, E. L. & Huppert, H. E. 2007 Granular column collapses: further experimental results. J. Fluid Mech. 575, 177186.Google Scholar
Topin, V., Monerie, Y., Perales, F. & Radjai, F. 2012 Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109, 188001.CrossRefGoogle Scholar
Viroulet, S., Sauret, A. & Kimmoun, O. 2014 Tsunami generated by a granular collapse down a rough inclined plane. Europhys. Lett. 105, 34004.Google Scholar
Zitti, G., Ancey, C., Postacchini, M. & Brocchini, M. 2016 Impulse waves generated by snow avalances: momentum and energy transfer to a water body. J. Geophys. Res. Earth Surf. 121, 23992423.Google Scholar