Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T15:47:00.114Z Has data issue: false hasContentIssue false

Flow in a small annulus between concentric cylinders

Published online by Cambridge University Press:  20 April 2006

M. Lücke
Affiliation:
Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, West Germany Permanent address: Fachrichtung Theoretische Physik, Universität des Saarlandes, D-6600 Saarbrücken, West Germany.
M. Mihelcic
Affiliation:
Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, West Germany
K. Wingerath
Affiliation:
Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, West Germany
G. Pfister
Affiliation:
Institut für Angewandte Physik der Universität Kiel D-2300 Kiel 1. West Germany

Abstract

Rotationally symmetric vortex flows between concentric cylinders with the inner one rotating and the outer one at rest have been investigated by numerical simulation and by laser-Doppler velocimetry for an annulus of aspect ratio Γ = 1.05 with a radius ratio η = 0.5066. Stationary states and relaxation towards them were explored close to the transition from the primary flow, which is mirror symmetric with respect to the midplane of the annulus, to a flow which gradually loses the symmetry. Detailed comparison of numerically simulated and measured velocity fields is made.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreichikov, I. P. 1977 Isv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza 12, 47 [English transl. Fluid Dyn. Sept. 1977, p. 38].
Benjamin, T. B. 1978 Proc. R. Soc. Lond. A 359, 1, 27.
Benjamin, T. B. & Mullin, T. 1981 Proc. R. Soc. Lond. A 377, 221.
Benjamin, T. B. & Mullin, T. 1982 J. Fluid Mech. 121, 219.
Cliffe, K. A. 1983 J. Fluid Mech. 135, 219.
Di Prima, R. C. & Swinney, H. L. 1981 In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), pp. 139180. Springer.
Frank, G. & Meyer-Spasche, R. 1981 Z. angew. Math. Phys. 32, 710.
Jones, C. A. 1982 J. Fluid Mech. 120, 433.
Kirchgässner, K. 1961 Z. angew. Math. Phys. 12, 14.
Mihelcic, M., Schröck-Pauli, C., Wingerath, K., Wenzl, H., Uelhoff, W. & van der Hart, A. 1981 J. Crystal Growth 53, 337.
Mihelcic, M., Schröck-Pauli, C., Wingerath, K., Wenzl, H., Uelhoff, W. & van der Hart, A. 1982 J. Crystal Growth 57, 300.
Moffat, H. K. 1964 J. Fluid Mech. 18, 1.
Moore, D. R. 1981 Contribution to the second Taylor Vortex Working Party at Tufts University, USA.
Pfister, G. & Rehberg, I. 1981 Phys. Lett. 83A, 19.
Vehrenkamp, R., Schätzel, K., Pfister, G., Fedders, B. S. & Schulz-DuBois, E. O. 1979 Phys. Scr. 19, 379.
Welch, J. E., Harlow, F. H., Shannon, J. P. & Daly, B. J. 1966 Los Alamos Sci. Lab. Rep. LA-3425.