Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:45:34.247Z Has data issue: false hasContentIssue false

Flow about a fluid sphere at low to moderate Reynolds numbers

Published online by Cambridge University Press:  21 April 2006

D. L. R. Oliver
Affiliation:
Department of Mechanical Engineering, Washington State University, Pullman, WA 99164–2920, USA Present address: Department of Mechanical Engineering, University of Toledo, Toledo, OH 43606, USA.
J. N. Chung
Affiliation:
Department of Mechanical Engineering, Washington State University, Pullman, WA 99164–2920, USA

Abstract

The steady-state equations of motion are solved for a fluid sphere translating in a quiescent medium. A semi-analytical series truncation method is employed in conjunction with a cubic finite-element scheme. The range of Reynolds numbers investigated is from 0.5 to 50. The range of viscosity ratios is from 0 (gas bubble) to 107 (solid sphere). The flow structure and the drag coefficients agree closely with the limited available experimental measurements and also compare favourably with published finite-difference solutions. The strength of the internal circulation was found to increase with increasing Reynolds number. The flow patterns and the drag coefficient show little variation with the interior Reynolds number. Based on the numerical results, predictive equations for drag coefficients are recommended for both moderate- and low-Reynolds-number flows.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Alim, A. H. & Hamielec, A. E. 1975 Ind. Engng Chem. Fund. 14, 308.
Bachhuber, C. & Sanford, C. 1974 J. Appl. Phys. 45, 2567.
Brabston, D. C. & Keller, H. B. 1975 J. Fluid Mech. 69, 179.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles, Chaps 3 and 5. Academic.
Dennis, S. C. R. & Walker, J. D. A. 1971 J. Fluid Mech. 48, 771.
Elzinga, E. R. & Banchero, J. T. 1961 AIChE J. 7, 394.
Hadamard, J. 1911 C. R. Acad. Sci. 152, 1735.
Huebner, K. H. 1975 The Finite Element Method for Engineers. Wiley.
Klee, A. J. & Treyball, R. E. 1956 AIChE J. 2, 444.
Leclair, B. P., Hamielec, A. E., Pruppacher, H. R. & Hall, W. D. 1972 J. Atmos. Sci. 29, 728.
Nakano, Y. & Tien, C. 1967 Can. J. Chem. Engng 45, 135.
Oliver, D. L. R. & Chung, J. R. 1985 J. Fluid Mech. 154, 215.
Rivkind, V. Ya. & Ryskin, G. M. 1976 Fluid Dyn. 11, 5.
Rivkind, V. Ya., Ryskin, G. M. & Fishbein, G. A. 1976 Appl. Math. Mech. 40, 687.
Rottenberg, M., Bivins, R., Metropolis, N. & Wooten, J. K. 1959 The 3-J and 6-J Symbols. Mit, Cambridge: The Technology Press.
Rybcznski, W. 1911 Bull. Intl Acad. Pol. Sci. Lett. Cl. Sci. Math. Natur. A, 40.
Talman, J. D. 1968 Special Functions. Benjamin.
Taneda, S. 1956 J. Phys. Soc. Japan 11, 1101.