Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:21:05.184Z Has data issue: false hasContentIssue false

Equilibrium boundary layers in moderate to strong adverse pressure gradients

Published online by Cambridge University Press:  20 April 2006

W. H. Schofield
Affiliation:
Aeronautical Research Laboratories, Fishermen's Bend, Melbourne, Australia

Abstract

An analysis of equilibrium boundary layers based on the Schofield–Perry defect law, which applies to flow in a moderate to strong adverse pressure gradient, is presented. The conditions derived for self-preserving or equilibrium boundary layers differ from those given by previous analyses based on the usual velocity-defect law. It is shown that twelve observed boundary layers on smooth walls conform to these new conditions for precise equilibrium flow. As the analytical expression for the Schofield–Perry defect law does not vary with pressure gradient, a specific expression for the shear-stress profile in any equilibrium layer can be derived. The predicted shear-stress profiles show good agreement with experimental data. Limits for the flow parameters within which equilibrium layers can exist are derived, and it is shown that observed equilibrium layers fall within these limits. A prediction method for layers in smoothly changing adverse-pressure gradients is outlined and demonstrated using equilibrium data. The unified account of equilibrium flow in adverse pressure gradients presented here is used to resolve some disagreements in the literature concerning existence conditions for equilibrium boundary layers.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradshaw, P. 1966 N.P.L. Aero. Rep. no. 1184. (See also J. Fluid Mech. 29, 1967, 625.)
Bradshaw, P. 1967 N.P.L. Aero. Rep. no. 1219.
Bradshaw, P. & Ferriss, D. H. 1965 N.P.L. Aero. Rep. no. 1145.
Bradshaw, P., Ferriss, D. H. & Atwell, N. P. 1967 J. Fluid Mech. 28, 593.
Coles, D. E. & Hirst, E. A. 1968 A.F.O.S.R.–I.F.P. Stanford Conf. on Turbulent Boundary Layer Prediction, vol. 2.
Clauser, F. H. 1954 J. Aero. Sci. 21, 91.
East, L. F. & Sawyer, W. G. 1979 AGARD Conf. Proc. 271.
East, L. F., Sawyer, W. G. & Nash, C. R. 1979 R.A.E. Tech. Rep. no. 79040.
East, L. F., Smith, P. D. & Merryman, P. J. 1977 R.A.E. Tech. Rep. no. 77046.
Fairlie, B. D. 1973 Ph.D. thesis, University of Melbourne.
Hama, F. R. 1954 Trans. Soc. Nav. Arch. Mar. Eng. 62, 333.
Head, M. R. 1976 J. Fluid Mech. 73, 1.
Kader, B. A. & Yaglom, A. M. 1978 J. Fluid Mech. 89, 305.
Klebanoff, P. S. 1954 NACA TN 3178.
Kline, S. J., Morkovin, M. V., Sovran, G. & Cockrell, D. J. 1968 A.F.O.S.R.–I.F.P. Stanford Conf. on Turbulent Boundary Layer Prediction, vol. 1.
Ludwieg, H. & Tillmann, W. 1949 Ing-Arch. 17, 288. (Transl. NACA TM 1285, 1950.)
Mellor, G. L. & Gibson, D. M. 1966 J. Fluid Mech. 24, 225.
Perry, A. E. & Fairlie, B. D. 1975 J. Fluid Mech. 69, 657.
Perry, A. E. & Schofield, W. H. 1973 Phys. Fluids 16, 2068.
Rotta, J. C. 1962 Prog. Aero. Sci. 2, 3.
Samuel, A. E. 1973 Ph.D. thesis, University of Melbourne.
Samuel, A. E. & Joubert, P. N. 1974 J. Fluid Mech. 66, 481.
Schofield, W. H. & Perry, A. E. 1972 A.R.L. Mech. Eng. Rep. no. 134.
Simpson, R. L., Strickland, J. H. & Barr, P. W. 1977 J. Fluid Mech. 79, 553.
Stratford, B. S. 1959 J. Fluid Mech. 5, 1, 17.
Townsend, A. A. 1956a J. Fluid Mech. 1, 561.
Townsend, A. A. 1956b The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1960 J. Fluid Mech. 8, 143.
Townsend, A. A. 1961a J. Fluid Mech. 11, 97.
Townsend, A. A. 1961b J. Fluid Mech. 12, 536.
Townsend, A. A. 1965a J. Fluid Mech. 22, 773.
Townsend, A. A. 1965b J. Fluid Mech. 23, 767.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Yaglom, A. M. 1979 Ann. Rev. Fluid Mech. 11, 505.