Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:14:10.192Z Has data issue: false hasContentIssue false

Elliptic jets. Part 2. Dynamics of coherent structures: pairing

Published online by Cambridge University Press:  26 April 2006

Hyder S. Husain
Affiliation:
Department of Mechanical Engineering, University of Houston, Texas 77204-4792, USA
Fazle Hussain
Affiliation:
Department of Mechanical Engineering, University of Houston, Texas 77204-4792, USA

Abstract

The dynamics of coherent structure interactions, in particular the jet column mode of vortex pairing, in the near field of an elliptic jet have been investigated using hotwire measurements and flow visualization. A 2:1 aspect-ratio jet with an initially laminar boundary layer and a constant momentum thickness all around the nozzle exit perimeter is used for this study. While detailed hot-wire measurements were made in air at a Reynolds number ReDe (≡UeDe/ν) = 3.2 × 104, flow visualization was performed in water at a lower ReDe = 1.7 × 104; here Ue is the exit speed and De is the equivalent diameter of the nozzle exit cross-section. Excitation at the stable pairing mode induced successive pairings to occur periodically at the same location, allowing phase-locked measurements using a local trigger sensor. Coherent structures were educed at different phases of pairing in the planes of both the major and minor axes. These are compared with corresponding data in a circular jet, educed similarly.

Pairing interactions are found to be quite different from those in a circular jet. Owing to non-planar and non-uniform self-induction of elliptical vortical structures and the consequent effect on mutual induction, pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane through an entanglement process, while in the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently. These motions produce considerably greater entrainment and mixing than in circular or plane jets. From distributions of dynamical properties over the extent of coherent structures, the production mechanism is explained in terms of the longitudinal vortices (or ribs) connecting the elliptic structures. Time-average measures and their modification by controlled excitation are also discussed in terms of coherent structure dynamics. A significant space in this paper is devoted to documenting phase-dependent and time-average flow measures; these new results should serve as target data for numerical simulations. Further details are given in Husain (1984).

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, E. 1976 J. Fluid Mech. 76, 561.
Ashurst, W. T. 1979 In Turbulent Shear Flows, 1 (ed. F. Durst et al.), pp. 40. Springer.
Batchelor, G. K. & Gill, A. E. 1962 J. Fluid Mech. 14, 529.
Bechert, D. & Pfizenmaier, E. 1975 J. Sound Vib. 43, 581.
Bernal, L. P. & Roshko, A. 1986 J. Fluid Mech. 170, 499.
Bridges, J. E. & Hussain, A. K. M. F. 1987 J. Sound Vib. 117, 289.
Browand, F. K. 1966 J. Fluid Mech. 26, 281.
Browand, F. K. & Weidman, P. D. 1976 J. Fluid Mech. 76, 127.
Brown, G. L. & Roshko, A. 1974 J. Fluid Mech. 64, 775.
Bruun, H. H. 1977 J. Fluid Mech. 83, 641.
Cantwell, B. & Coles, D. 1983 J. Fluid Mech. 136, 321.
Chandrasuda, C., Mehta, R. D., Weir, R. A. D. & Bradshaw, P. 1978 J. Fluid Mech. 85, 693.
Clark, J. A. & Kit, L. 1980 Trans. ASME I: J. Fluids Engng 102, 219.Google Scholar
Cohen, J. & Wygnanski, I. 1987 J. Fluid Mech. 176, 221.
Corcos, G. M. & Sherman, F. S. 1984 J. Fluid Mech. 139, 29.
Crighton, D. G. 1981 J. Fluid Mech. 106, 261.
Ffowcs-Williams, J. E. & Kempton, A. J. 1978 J. Fluid Mech. 84, 673.
Grinstein, F. F., Hussain, F. & Oran, E. 1989 AIAA Paper 89–0977.
Gutmark, E. & Wygnanski, I. 1976 J. Fluid Mech. 38, 577.
Hayakawa, M. & Hussain, A. K. M. F. 1985 5th Symp. on Turbulent Shear Flows, pp. 4.33. Cornell University.
Hayakawa, M. & Hussain, F. 1987 J. Fluid Mech. 187, 193.
Hayakawa, M. & Hussain, F. 1991 J. Fluid Mech. (submitted).
Ho, C. M. & Huang, L. S. 1982 J. Fluid Mech. 119, 443.
Ho, C. M. & Huerre, P. 1984 Ann. Rev. Fluid Mech. 16, 365.
Husain, H. S. 1984 An experimental investigation of unexcited and excited elliptic jets. Ph.D. thesis, Univesity of Houston.
Hussain, A. K. M. F. 1981 Proc. Ind. Acad. Sci. 4, 129.
Hussain, A. K. M. F. 1983 Phys. Fluids 26, 2816.
Hussain, A. K. M. F. 1984 In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p. 453. North-Holland.
Hussain, A. K. M. F. 1986 J. Fluid Mech. 173, 303.
Hussain, A. K. M. F. & Husain, H. S. 1989 J. Fluid Mech. 208, 257 (referred to herein as Part 1).
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1980 J. Fluid Mech. 101, 493.
Jimenez, J., Cogollos, M. & Bernal, L. 1985 J. Fluid Mech. 152, 125.
Kambe, T. 1984 J. Sound Vib. 95, 351.
Kelly, R. E. 1967 J. Fluid Mech. 27, 667.
Kibens, V. 1980 AIAA J. 18, 434.
Krothapalli, A., Baganoff, D. & Karamcheti, K. 1981 J. Fluid Mech. 107, 201.
Laufer, J. 1974 Omaggio Carto Ferrari, pp. 451. Libreria Editrice Universitaria Lerrotto & Bella, Torino.
Laufer, J. 1983 Trans. ASME E: J. Appl. Mech. 50, 1079.
Laufer, J. & Zhang, J. Z. 1983 Phys. Fluids 26, 1740.
Mankbadi, R. R. 1985 J. Fluid Mech. 160, 385.
Mansour, N. N. & Barr, P. K. 1985 5th Symp. on Turbulent Shear Flows, Cornell University.
Mansour, N. N., Hussain, F. & Buell, J. C. 1988 CTR Rep. CTR-S88, p. 57.
Maxworthy, T. 1974 J. Fluid Mech. 64, 227.
Metcalfe, R., Hussain, A. K. M. F., Menon, S. & Hayakawa, M. 1987 Turbulent Shear Flows, 5 (ed F. Durst, B. E. Launder, J. L. Lumley, F. W. Schmidt & J. H. Whitelaw), pp. 110. Springer.
Möhring, W. 1978 J. Fluid Mech. 85, 685.
Monkewitz, P. A. 1988 J. Fluid Mech. 188, 223.
Moore, C. J. 1977 J. Fluid Mech. 80, 321.
Obermeier, F. 1985 J. Sound Vib. 99, 111.
Patnaik, P. C., Sherman, F. S. & Corcos, G. M. 1976 J. Fluid Mech. 73, 215.
Petersen, R. A. & Samet, M. M. 1988 J. Fluid Mech. 194, 153.
Raman, G. & Rice, E. J. 1989 NASA Tech. Memo. 101946.
Reynolds, W. C. & Bouchard, E. E. 1981 In Unsteady Turbulent Shear Flows (ed. R. Michel, J. Cousteix & R. Houdeville), p. 402. Springer.
Riley, J. J. & Metcalfe, R. W. 1980 AIAA Paper 80–0274.
Sato, H. 1959 J. Phys. Soc. Japan 14, 1797.
Tso, J. 1983 Coherent structures in a fully developed turbulent axisymmetric jet. Ph.D. thesis, The Johns Hopkins University.
Wille, R. 1963 Z. Flugwiss. 11, 222.
Winant, C. D. & Browand, F. K. 1974 J. Fluid Mech. 63, 237.
Wygnanski, I. & Fiedler, F. 1969 J. Fluid Mech. 38, 577.
Yule, A. J. 1978 J. Fluid Mech. 89, 413.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 J. Fluid Mech. 101, 449.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 J. Fluid Mech. 112, 379.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1984 J. Fluid Mech. 138, 325.