Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:49:06.884Z Has data issue: false hasContentIssue false

Efficient kinematics for jet-propelled swimming

Published online by Cambridge University Press:  18 September 2013

S. Alben*
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
L. A. Miller
Affiliation:
Department of Mathematics and Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
J. Peng
Affiliation:
Department of Mechanical Engineering, University of Alaska, Fairbanks, AK 99775, USA
*
Email address for correspondence: [email protected]

Abstract

We use computer simulations and an analytical model to study the relationship between kinematics and performance in jet-propelled jellyfish swimming. We prescribe different power-law kinematics for the bell contraction and expansion, and identify kinematics that yield high swimming speeds and/or high efficiency. In the simulations, high efficiency is found when the bell radius is a nearly linear function of time, and in a second case corresponding to ‘burst-and-coast’ kinematics. The analytical model studies the contraction phase only, and finds that the efficiency-optimizing bell radius as a function of time transitions from nearly linear (similar to the numerics) for small-to-moderate output power to exponentially decaying for large output power.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, S. 2008 Optimal flexibility of a flapping appendage at high Reynolds number. J. Fluid Mech. 614, 355380.CrossRefGoogle Scholar
Alben, S. 2009 Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 228 (7), 25872603.CrossRefGoogle Scholar
Alben, S. 2010a Regularizing a vortex sheet near a separation point. J. Comput. Phys. 229, 52805298.CrossRefGoogle Scholar
Alben, S. 2010b Self-similar bending in a flow: the axisymmetric case. Phys. Fluids 22, 081901.CrossRefGoogle Scholar
Alben, S. 2012 The attraction between a flexible filament and a point vortex. J. Fluid Mech. 697, 481503.CrossRefGoogle Scholar
Alexander, R. M. N. 1967 Functional Design in Fishes. Hutchinson.Google Scholar
Alexander, R. M. N. 2003 Principles of Animal Locomotion. Princeton University Press.Google Scholar
Anderson, E. J. & Demont, M. E. 2000 The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure. J. Expl Biol. 203 (18), 28512863.CrossRefGoogle ScholarPubMed
Biewener, A. A. 2003 Animal Locomotion. Oxford University Press.Google Scholar
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
Dabiri, J. O., Colin, S. P. & Costello, J. H. 2006 Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. J. Expl Biol. 209, 20252033.CrossRefGoogle ScholarPubMed
Dabiri, J. O., Colin, S. P., Costello, J. H. & Gharib, M. 2005 Vortex motion in the ocean: in situ visualization of jellyfish swimming and feeding flows. Phys. Fluids 17, 091108.CrossRefGoogle Scholar
Dabiri, J. O., Colin, S. P., Katija, K. & Costello, J. H. 2010 A wake-based correlate of swimming performance and foraging behaviour in seven co-occurring jellyfish species. J. Expl Biol. 213 (8), 12171225.CrossRefGoogle ScholarPubMed
Daniel, T. L. 1983 Mechanics and energetics of medusan jet propulsion. Can. J. Zool. 61 (6), 14061420.CrossRefGoogle Scholar
Daniel, T. L. 1985 Cost of locomotion: unsteady medusan swimming. J. Expl Biol. 119 (1), 149164.CrossRefGoogle Scholar
DeMont, M. E. & Gosline, J. M. 1988a Mechanics of jet propulsion in the hydromedusan jellyfish, polyorchis penicillatus. I. Mechanical properties of the locomotor structure. J. Expl Biol. 134, 313332.CrossRefGoogle Scholar
DeMont, M. E. & Gosline, J. M. 1988b Mechanics of jet propulsion in the hydromedusan jellyfish, polyorchis penicillatus: II. Energetics of the jet cycle. J. Expl Biol. 134 (1), 333345.CrossRefGoogle Scholar
Evans, A. A., Spagnolie, S. E. & Lauga, E. 2010 Stokesian jellyfish: viscous locomotion of bilayer vesicles. Soft Matt. 6 (8), 17371747.CrossRefGoogle Scholar
Franco, E., Pekarek, D. N., Peng, J. & Dabiri, J. O. 2007 Geometry of unsteady fluid transport during fluid-structure interactions. J. Fluid Mech. 589, 125146.CrossRefGoogle Scholar
Gladfelter, W. B. 1973 A comparative analysis of the locomotory systems of medusoid cnidaria. Helgoland. Wiss. Meer. 25, 228272.CrossRefGoogle Scholar
Gosline, J. M. & DeMont, M. E. 1985 Jet-propelled swimming in squids. Sci. Am. 252 (1), 96103.CrossRefGoogle Scholar
Griffith, B. E., Hornung, R. D., McQueen, D. M. & Peskin, C. S. 2007 An adaptive, formally second-order accurate version of the immersed boundary method. J. Comput. Phys. 223, 1049.CrossRefGoogle Scholar
Hamlet, C., Santhanakrishnan, A. & Miller, L. A. 2011 A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish cassiopea xamachana. J. Expl Biol. 214 (11), 19111921.CrossRefGoogle ScholarPubMed
Herschlag, G. & Miller, L. A. 2011 Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. J. Theor. Biol. 285, 8495.CrossRefGoogle ScholarPubMed
Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. 2001 Boundary integrals methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 302362.CrossRefGoogle Scholar
Huang, W.-X. & Sung, H. J. 2009 An immersed boundary method for fluid-flexible structure interaction. Comput. Meth. Appl. Mech. Engng 198, 26502661.CrossRefGoogle Scholar
Jones, M. 2003 The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech. 496, 405441.CrossRefGoogle Scholar
Krasny, R. 1986 Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292313.CrossRefGoogle Scholar
Krasny, R. & Nitsche, M. 2002 The onset of chaos in vortex sheet flow. J. Fluid Mech. 454, 4769.CrossRefGoogle Scholar
Linden, P. F. & Turner, J. S. 2001 The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices. J. Fluid Mech. 427, 6172.CrossRefGoogle Scholar
McHenry, M. J. & Jed, J. 2003 The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita). J. Expl Biol. 206 (22), 41254137.CrossRefGoogle ScholarPubMed
Megill, W. M. D. 2002 The biomechanics of jellyfish swimming. PhD thesis, The University of British Columbia.Google Scholar
Mohseni, K. & Sahin, M. 2009 An arbitrary Lagrangian–Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria . J. Comput. Phys. 228.Google Scholar
Nitsche, M. & Krasny, R. 1994 A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139161.CrossRefGoogle Scholar
O’Dor, R. K. & Webber, D. M. 1991 Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution. J. Expl Biol. 160 (1), 93112.CrossRefGoogle Scholar
Pabst, D. A. 1996 Springs in swimming animals. Am. Zool. 36 (6), 723735.CrossRefGoogle Scholar
Peng, J. & Alben, S. 2012 Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer. Bioinsp. Biomimet. 7, 016012.CrossRefGoogle ScholarPubMed
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11 (1), 479517.CrossRefGoogle Scholar
Ralston, A. & Rabinowitz, P. 2001 A First Course in Numerical Analysis. Dover.Google Scholar
Romanes, G. J. 1876 Preliminary observations on the locomotor system of medusae. Phil. Trans. R. Soc. Lond. B 166, 269313.Google Scholar
Satterlie, R. A. 2002 Neuronal control of swimming in jellyfish: a comparative story. Can. J. Zool. 80, 16541669.CrossRefGoogle Scholar
Spagnolie, S. E. & Lauga, E. 2010 Jet propulsion without inertia. Phys. Fluids 22 (8), 1902.CrossRefGoogle Scholar
Sparenberg, J. A. 2002 Survey of the mathematical theory of fish locomotion. J. Engng Maths 44 (4), 395448.CrossRefGoogle Scholar
Vogel, S. & Davis, K. K. 2000 Cats’ Paws and Catapults: Mechanical Worlds of Nature and People. WW Norton & Company.Google Scholar
Wilson, M. M. & Eldredge, J. D. 2011 Performance improvement through passive mechanics in jellyfish-inspired swimming. Intl J. Non-Linear Mech. 46 (4), 557567.CrossRefGoogle Scholar