Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:14:37.110Z Has data issue: false hasContentIssue false

The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows

Published online by Cambridge University Press:  08 August 2008

DANIEL C. CONLEY
Affiliation:
Marine Institute, University of Plymouth, Plymouth, UK
SILVIA FALCHETTI
Affiliation:
NATO Undersea Research Centre, La Spezia, Italy Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio, Università di Genova, 16145 Genova, Italy
IRIS P. LOHMANN
Affiliation:
SimCorp A/S, Copenhagen, Denmark
MAURIZIO BROCCHINI
Affiliation:
Istituto di Idraulica e Infrastrutture Viarie, Univesità Politecnica delle Marche, Ancona, Italy

Abstract

The two-way effects of the time-varying suppression of turbulence by gradients in suspended sediment concentration have been investigated using a modified form of the Generalized Ocean Turbulence Model (GOTM). Field measurements of fluid velocities and sediment concentrations collected under high-energy conditions (mobility number ≈ 900) have been simulated both including and neglecting the feedback between sediment and turbulence. The results show that, when present, this feedback increases the wave-coherent component of transport relative to the mean component of transport, which can even change the direction of transport. Comparisons between measured and simulated time series of near-bed sediment concentrations show great coherence (0.95 correlation) and it is argued that the differences in net transport rates may be partially explained by the use of a uniform grain size in the simulations. It is seen that the effects of sediment stratification scale with orbital velocity divided by sediment setting velocity, um/ws, for all grain sizes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beach, R. A., Sternberg, R. W. & Jonsson, R. 1992 A fiber optic sensor for monitoring suspended sediment. Mar. Geol. 103, 513520.CrossRefGoogle Scholar
Blackford, J. C., Allen, J. I. & Gilbert, F. J. 2004 Ecosystem dynamics at six contrasting sites: a generic modelling study. J. Mar. Systems 52 (1–4), 191215.CrossRefGoogle Scholar
Burchard, H. 1999 Recalculation of surface slopes as forcing for numerical water column models of tidal flow. Appl. Math. Modelling 4, 737755.Google Scholar
Burchard, H. & Bolding, K. 2001 Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J. Phys. Oceanogr. 31, 19431968.2.0.CO;2>CrossRefGoogle Scholar
Burchard, H., Bolding, K. & Villareal, M. R. 1999 GOTM, a general ocean turbulence model. Theory, implementation and test cases. Tech Rep EUR 18745-EN, European Commission, JRC Ispra, pp. 1–103.Google Scholar
Burchard, H., Petersen, O. & Rippeth, T. P. 1998 Comparing the performance of the Mellor-Yamada and the k-epsilon two-equation turbulence models. J. Geophys. Res. 103 (C5), 1054310554.CrossRefGoogle Scholar
Byun, D.-S. & Wang, X. H. 2005 The effect of sediment stratification on tidal dynamics and sediment transport patterns. J. Geophys. Res. 110, C03011.Google Scholar
Calantoni, J. & Puleo, J. A. 2006 Role of pressure gradients in sheet flow of coarse sediments under sawtooth waves. J. Geophys. Res. 111, C01010.Google Scholar
Canuto, V. M., Howard, A., Cheng, Y. & Dubovikov, M. S. 2001 Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31 (6), 14131426.2.0.CO;2>CrossRefGoogle Scholar
Cellino, M. & Graf, W. H. 2007 Sediment-laden flow in open-channels under noncapacity and capacity conditions. J. Hydraul. Engng 125 (5), 455462.CrossRefGoogle Scholar
Chang, Y. S. & Scotti, A. 2006 Turbulent convection of suspended sediments due to flow reversal. J. Geophys. Res. 111, C07001.Google Scholar
Coleman, N. L. 1981 Velocity profiles with suspended sediment. J. Hydraul. Res. 19, 211229.CrossRefGoogle Scholar
Conley, D. C. & Beach, R. A. 2003 Cross-shore sediment transport partitioning in the nearshore during a storm event. J. Geophys. Res. 108 (C3), 10. doi:1029/2001JC001230Google Scholar
Conley, D. C. & Inman, D. L. 1994 Ventilated oscillatory boundary layers. J. Fluid Mech. 273, 262284.CrossRefGoogle Scholar
Davies, A. G., Ribberink, J. S., Temperville, A. & Zyserman, J. A. 1997 Comparisons between sediment transport models and observations made in wave and current flows above plane beds. Coast. Engng 31 (1–4), 163198.Google Scholar
Dohmen-Janssen, C. M., Hassan, W. N. & Ribberink, J. S. 2001 Mobile-bed effects in oscillatory sheet flow. J. Geophys. Res. 106 (C11), 2710327115.Google Scholar
Eifler, W. & Schrimpf, W. 1992 ISPRAMIX, a hydrodynamic program for computing regional sea circulation patterns and transfer processes. Tech. Rep. EUR 14856, European Commission Joint Research Center, Ispra, Italy.Google Scholar
Einstein, H. A. & Chien, N. 1955 Effects of heavy sediment concentration near the bed on velocity and sediment distribution. University, of California, Institute of Engineering Research, Berkeley, California, pp. 198.Google Scholar
Elgar, S., Gallagher, E. L. & Guza, R. T. 2001 Nearshore sandbar migration. J. Geophys. Res. 106 (C6), 1162311627.CrossRefGoogle Scholar
Foster, D. L., Beach, R. A. & Holman, R. A. 2006 Turbulence observations of the nearshore wave bottom boundary layer. J. Geophys. Res. 111, C04011.Google Scholar
Gallagher, E. L., Elgar, S. & Guza, R. T. 1998 Observations of sand bar evolution on a natural beach. J. Geophys. Res. 103 (C2), 32033215.Google Scholar
Gelfenbaum, G. & Smith, J. D. 1986 Experimental evaluation of a generalized suspended-sediment transport theory. In Shelf Sands and Sandstones (ed. Knight, R. J. & McLean, J. R.). Canadian Society of Petroleum Geologists, Calgary, Alberta, Canada, pp. 133144.Google Scholar
Hanes, D. M. 1991 Suspension of sand due to wave groups. J. Geophys. Res. 96 (C5), 89118915.Google Scholar
Henderson, S. M., Allen, J. S. & Newberger, P. A. 2004 Nearshore sandbar migration predicted by an eddy-difusive boundary layer model. J. Geophys. Res. 109, C06024.Google Scholar
Hermann, M. J. & Madsen, O. S. 2007 Effect of stratification due to suspended sand on velocity and concentration distribution in unidirectional flows. J. Geophys. Res. 112, C02006.Google Scholar
Hoefel, F. & Elgar, S. 2003 Wave-induced sediment transport and sandbar migration. Science 299, 18851887.CrossRefGoogle ScholarPubMed
Holmedal, L. E., Myrhaug, D. & Eidsvik, K. J. 2004 Sediment suspension under sheet flow conditions beneath random waves plus current. Cont. Shelf Res. 24 (17), 20652091.CrossRefGoogle Scholar
Lamb, M. P., D'Asaro, E. & Parsons, J. D. 2004 Turbulent structure of high-density suspensions formed under waves. J. Geophys. Res. 109, C12026.Google Scholar
Lau, Y. L. & Chu, V. H. 1987 Suspended sediment effect on turbulent diffusion. 22nd IAHR Congress, Lausanne, Switzerland.Google Scholar
Lohmann, I. P., Fredsoe, J., Sumer, B. M. & Christensen, E. D. 2006 Large eddy simulation of the ventilated wave boundary layer. J. Geophys. Res. 111, C06036.Google Scholar
Lyn, D. A. 1992 Turbulence characteristics of sediment-laden flows in open channels. J. Hydraul. Engng 118 (7), 971988.CrossRefGoogle Scholar
McLean, S. R. 2005 On the calculation of suspended load for noncohesive sediments. J. Geophys. Res. 97 (C4), 57595770.Google Scholar
Munk, W. H. & Anderson, E. R. 1948 Notes on the theory of the thermocline. J. Mar. Res. 3, 276295.Google Scholar
Nielsen, P. 1979 Some Basic Concepts of Wave Sediment Transport. Series Paper no. 20, Institute Hydrodynamics & Hydraulic Engineering, Technical University Denmark, Lyngby, pp. 1166.Google Scholar
Nielsen, P. 1992, Coastal Bottom Boundary Layers and Sediment Transport. World Scientific.Google Scholar
Nielsen, P. 2006 Sheet flow sediment transport under waves with acceleration skewness and boundary layer streaming. Coast. Engng 53 (9), 749758.CrossRefGoogle Scholar
Nielsen, P. & Teakle, I. A. L. 2004 Turbulent diffusion of momentum and suspended particles: A finite-mixing-length theory. Phys. Fluids 16 (7), 23422348.CrossRefGoogle Scholar
Plant, N. G., Holland, K. T., Puleo, J. A. & Gallagher, E. L. 2004 Prediction skill of nearshore profile evolution models. J. Geophys. Res. 109, C01006.Google Scholar
Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5, 136139.Google Scholar
Ralston, D. K. & Stacey, M. T. 2006 Shear and turbulence production across subtidal channels. J. Mar. Res. 64 (1), 147171.CrossRefGoogle Scholar
Ribberink, J. S. & Al-Salem, A. A. 1995 Sheet flow and suspension of sand in oscillatory boundary layers. Coast. Engng 25, 205225.CrossRefGoogle Scholar
Rodi, W. 1987 Examples of calculation methods for flow and mixing in stratified flows. J. Geophys. Res. 92, 53055328.Google Scholar
Schumann, U. & Gerz, T. 1995 Turbulent mixing in stably stratified shear flows. J. Appl. Met. 34, 3348.CrossRefGoogle Scholar
Smith, J. D. & McLean, S. R. 1977 Spatially averaged flow over a wavy surface. J. Geophys. Res. 82 (12), 17351746.Google Scholar
Stips, A., Burchard, H., Bolding, K. & Eifler, W. 2002 Modelling of convective turbulence with a two-equation k-e turbulence closure scheme. Ocean Dyn. 52 (4), doi. 10.1007/s10236-002-0019-2, 153168.Google Scholar
Taylor, P. A. & Dyer, K. R. 1977 Theoretical models of flow near the bed and their implications for sediment transport. In Marine Modeling. The Sea (ed. Goldberg, E. D.), pp. 579601. Wiley.Google Scholar
Thompson, C. E. L., Amos, C. L., Angelaki, M., Jones, T. E. R. & Binks, C. E. 2006 An evaluation of bed shear stress under turbid flows. J. Geophys. Res. 111, C04008.Google Scholar
Thornton, E. B., Humiston, R. T. & Birkemeier, W. 1996 Bar/trough generation on a natural beach. J. Geophys. Res. 101 (C5), 1209712110.Google Scholar
Trowbridge, J. & Young, D. 1989 Sand transport by unbroken water waves under sheet flow conditions. J. Geophys. Res. 94 (C8), 1097110991.Google Scholar
Umlauf, L., Burchard, H. & Bolding, K. 2006 GOTM Sourcecode and test case documentation. Version 3.2, http://www.gotm.net, pp. 1–231.Google Scholar
Vanoni, V. A. 1946 Transportation of suspended sediment by water. Trans. Am. Soc. Civ. Engng 111, 67133.Google Scholar
Winterwerp, J. C. 2001 Stratification effects by cohesive and noncohesive sediment. J. Geophys. Res. 106 (C10), 2255922574.CrossRefGoogle Scholar
Winterwerp, J. C. 2006 Stratification effects by fine suspended sediment at low, medium, and very high concentrations. J. Geophys. Res. 111, C05012.Google Scholar
Zanke, U. 1977 Berechnung der Sinkgeschwindigkeiten von Sedimenten. Mittleilungen des Franzius-Institutes 46, 231245.Google Scholar