Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T11:57:54.140Z Has data issue: false hasContentIssue false

Effective velocity boundary condition at a mixed slip surface

Published online by Cambridge University Press:  26 April 2007

M. SBRAGAGLIA
Affiliation:
Faculty of Applied Sciences, IMPACT, and Burgerscentrum, University of Twente, AE 7500 Enschede, The Netherlands
A. PROSPERETTI
Affiliation:
Faculty of Applied Sciences, IMPACT, and Burgerscentrum, University of Twente, AE 7500 Enschede, The Netherlands Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

This paper studies the nature of the effective velocity boundary condition for liquid flow over a plane boundary on which small free-slip islands are randomly distributed. It is found that an effective Navier partial-slip condition for the velocity emerges from a statistical analysis valid for arbitrary fractional area coverage β. As an example, the general theory is applied to the low-β limit and this result is extended heuristically to finite β with a resulting slip length proportional to aβ/(1 − β), where a is a characteristic size of the islands. A specification of the nature of the free-slip islands is not required in the analysis. They could be nano-bubbles, as suggested by recent experiments, or hydrophobic surface patches. The results are also relevant for ultra-hydrophobic surfaces exploiting the so-called ‘lotus effect’.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Barthlott, W. & Neinhaus, C. 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.CrossRefGoogle Scholar
Bunkin, N. F., Kochergin, A. V., Lobeyev, A. V., Ninham, B. W. & Vinogradova, O. I. 1996 Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity. Colloid Interface Sci. A 110, 207212.Google Scholar
Cheng, J.-T. & Giordano, N. 2002 Fluid flow through nanometer-scale channels. Phys. Rev. Lett. 65, 031206.Google ScholarPubMed
Choi, C. H. & Kim, C. J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96, 066001.CrossRefGoogle Scholar
Craig, V. S. J., Neto, C. & Williams, D. R. M. 2001 Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87, 054504.CrossRefGoogle Scholar
Dammer, S. M. & Lohse, D. 2006 Gas enrichment at liquid-wall interfaces. Phys. Rev. Lett. 96, 206101.CrossRefGoogle ScholarPubMed
Davis, A. M. J. 1991 Shear flow disturbance due to a hole in the plane. Phys. Fluids A 3, 478480.CrossRefGoogle Scholar
Foldy, L. 1945 The multiple scattering of waves. Phys. Rev. 67, 107119.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2000 Table of Integrals, Series, and Products, 6th edn. Academic.Google Scholar
Holmberg, M., Kühle, A., Garnaes, J., Mörch, K. A. & Boisen, A. 2003 Nanobubble trouble on gold surfaces. Langmuir 19, 10,51010,513.CrossRefGoogle Scholar
Ishida, N., Inoue, T., Miyahara, M. & Higashitani, K. 2000 Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16, 63776380.CrossRefGoogle Scholar
Jäger, W. & Mikeli'c, A. 2001 On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Diffl Equat. 170, 96122.CrossRefGoogle Scholar
Joseph, P., Cottin-Bizonne, C., Benoit, J.-M., Ybert, C., Journet, C., Tabeling, P. & Bocquet, L. 2006 Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97, 156104.CrossRefGoogle ScholarPubMed
Kim, S. & Karrila, S. 1991 Microhydrodynamics. Butterworth-Heinemann.Google Scholar
Lauga, E., Brenner, M. P. & Stone, H. A. 2005 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics (ed. Foss, J., Tropea, C. & Yarin, A.). Springer (to appear).Google Scholar
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489, 5577.CrossRefGoogle Scholar
Neto, C., Evans, D. R., Bonaccurso, E., Butt, H. J. & Craig, V. S. J. 2005 Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–897.CrossRefGoogle Scholar
Ou, J., Perot, B. & Rothstein, P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16, 46354643.CrossRefGoogle Scholar
Ou, J. & Rothstein, P. 2005 Direct velocity measurement of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17, 103606.CrossRefGoogle Scholar
Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23, 353370.CrossRefGoogle Scholar
Pit, R., Hervet, H. & Léger, L. 2000 Direct experimental evidence of slip in hexadecane: Solid interfaces. Phys. Rev. Lett. 85, 980983.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Ranger, K. B. 1978 The circular disc straddling the interface of a two phase flow. Intl J. Multiphase Flow 4, 263277.CrossRefGoogle Scholar
Rubinstein, J. & Keller, J. 1989 Sedimentation of a dilute suspension. Phys. Fluids A 1, 637643.CrossRefGoogle Scholar
Sarkar, K. & Prosperetti, A. 1995 Effective boundary conditions for the Laplace equation with a rough boundary. Proc. R. Soc. Lond. A 451, 425452.Google Scholar
Sarkar, K. & Prosperetti, A. 1996 Effective boundary conditions for Stokes flow over a rough surface. J. Fluid Mech. 316, 223240.CrossRefGoogle Scholar
Sbragaglia, M., Benzi, R., Biferale, L., Succi, S. & Toschi, F. 2006 Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows. Phys. Rev. Lett. 97, 204503.CrossRefGoogle ScholarPubMed
Simonsen, A. C., Hansen, P. L. & Klosgen, B. 2004 Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J. Colloid Interface Sci. 273, 291299.CrossRefGoogle Scholar
Smith, S. H. 1987 Stokes flows past slits and holes. Intl J. Multiphase Flow 13, 219231.CrossRefGoogle Scholar
Sneddon, I. N. 1966 Mixed Boundary Value Problems in Potential Theory. North-Holland.Google Scholar
Steitz, R., Gutberlet, T., Hauss, T., Klösgen, B., Krastev, R., Schemmel, S., Simonsen, A. C. & Findenegg, G. H. 2003 Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19, 24092418.CrossRefGoogle Scholar
Stone, H. A. & Ajdari, A. 1998 Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J. Fluid Mech. 369, 151173.CrossRefGoogle Scholar
Tartakovsky, D. M. & Xiu, D. B. 2006 Stochastic analysis of transport in tubes with rough walls. J. Comput. Phys. 217, 248259.CrossRefGoogle Scholar
Tretheway, D. & Meinhart, C. 2002 Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9L12.CrossRefGoogle Scholar
Twersky, V. 1957 On scattering and reflection of sound by rough surfaces. J. Acoust. Soc. Am. 29, 209225.CrossRefGoogle Scholar
Twersky, V. 1983 Reflection and scattering of sound by correlated rough surfaces. J. Acoust. Soc. Am. 73, 8594.CrossRefGoogle Scholar
Tyrrell, J. W. G. & Attard, P. 2001 Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87, 176104.CrossRefGoogle ScholarPubMed
Vinogradova, O. I. 1999 Slippage of water over hydrophobic surfaces. Intl J. Mineral Proc. 56, 3160.CrossRefGoogle Scholar
Watanabe, K., Yanuar & Udagawa, H. 1999 Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225238.CrossRefGoogle Scholar
Wu, Z., Zhang, X., Zhang, X., Li, G., Sun, J., Zhang, M. & Hu, J. 2005 Nanobubbles influence on BSA adsorption on mica surface. Surface Interface Anal. 37, 797801.CrossRefGoogle Scholar
Zhu, Y. & Granick, S. 2001 Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87, 096105.CrossRefGoogle ScholarPubMed
Zhu, Y. & Granick, S. 2002 Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88, 106102.CrossRefGoogle ScholarPubMed