Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-20T07:35:30.409Z Has data issue: false hasContentIssue false

The effect of contraction on a homogeneous turbulent shear flow

Published online by Cambridge University Press:  20 April 2006

K. R. Sreenivasan
Affiliation:
Applied Mechanics, Yale University, New Haven, Connecticut 06520

Abstract

A homogeneous turbulent shear flow in its asymptotic stage of development was subjected to an additional (longitudinal) strain by passing the flow through gradual contraction in the direction perpendicular to that of the mean shear. Two contractions, of area ratio 1.4 and 2.6, were used. Mean velocity and turbulent stress (both normal and shear) distributions were measured at several streamwise locations in the contraction region. The mean velocity distributions agree quite well with calculations based on the (inviscid) Bernoulli equation. Until at least half-way down the contraction with the larger area ratio, the rapid-distortion calculations considering only the streamwise acceleration were found to be reasonably successful in predicting the turbulent intensities. For the smaller-area-ratio contraction, corrections for the ‘natural development’ of the shear flow become important nearly everywhere. Similar calculations considering the shear as the only straining mechanism are generally less successful, although the shear strain rate is at least as rapid as, or even more so than, the longitudinal one. The pressure-rate-of-strain covariance terms estimated from the approximate component energy balance were used to test the adequacy of three models with varying degrees of complexity. Although none of these models appears general enough, their performance is generally adequate for the lower-area-ratio contraction; perhaps not surprisingly, the more complex the model the better its performance.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. & Proudman, I. 1954 Q. J. Mech. Appl. Maths 7, 83.
Bradbury, L. J. S. 1965 J. Fluid Mech. 23, 31.
Champagne, F. H., Sleicher, C. A. & Wehrmann, O. H. 1967 J. Fluid Mech. 28, 153.
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 J. Fluid Mech. 41, 81.
Chou, P. Y. 1945 Q. Appl. Maths 3, 38.
Daly, B. J. & Harlow, F. H. 1970 Phys. Fluids 13, 2634.
Donaldson, C. 1971 In Proc. AGARD Conf. on Turbulent Shear Flows, London, paper B-1.
Feiereisen, W. J., Shirani, E., Ferziger, J. H. & Reynolds, W. C. 1981 In Proc. Third Symp. on Turbulent Shear Flows, Davis, California, p. 19.31.
Gence, J. N. & Mathieu, J. 1979 J. Fluid Mech. 93, 501.
Gibson, M. M. & Launder, B. E. 1978 J. Fluid Mech. 86, 491.
Gibson, M. M. & Rodi, W. 1981 J. Fluid Mech. 103, 161.
Hanjalic, K. & Launder, B. E. 1972 J. Fluid Mech. 52, 609.
Harris, V. G., Graham, J. A. H. & Corrsin, S. 1977 J. Fluid Mech. 81, 657.
Hunt, J. C. R. 1973 J. Fluid Mech. 61, 625.
Hunt, J. C. R. 1977 Thirteenth Biennial Fluid Dynamics Symp. Advanced Problems and Methods in Fluid Dynamics, Poland.
Keffer, J. F., Kawall, J. G., Hunt, J. C. R. & Maxey, M. R. 1978 J. Fluid Mech. 86, 465.
Klebanoff, P. S. 1955 N.A.C.A. Tech. Rep. 1292.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 J. Fluid Mech. 68, 537.
Leslie, D. C. 1980 J. Fluid Mech. 98, 435.
Lumley, J. L. 1978 Adv. Appl. Mech. 18, 124.
Lumley, J. L. & Khajeh-Nouri, B. 1974 Adv. Geophys. 18A, 169.
Maxey, M. R. 1982 J. Fluid Mech. 124, 261.
Mulhearn, P. J. & Luxton, R. E. 1970 Dept Mech. Engng Univ. Sydney Rep. F-19.
Mulhearn, P. J. & Luxton, R. E. 1975 J. Fluid Mech. 68, 577.
Narasimha, R. & Sreenivasan, K. R. 1973 J. Fluid Mech. 61, 417.
Pearson, J. R. A. 1959 J. Fluid Mech. 5, 274.
Phillips, O. M. 1955 Proc. Camb. Phil. Soc. 51, 220.
Prabhu, A., Narasimha, R. & Sreenivasan, K. R. 1974 Adv. Geophys. 18B, 317.
Reynolds, W. C. 1976 Ann. Rev. Fluid Mech. 8, 183.
Ribner, H. S. & Tucker, M. 1953 NACA Tech. Rep. 1113.
Rose, W. G. 1966 J. Fluid Mech. 25, 97.
Rotta, J. C. 1951 Z. Phys. 129, 547.
Rotta, J. C. 1962 Prog. Aero. Sci. 2, 1.
Sreenivasan, K. R. & Narasimha, R. 1978 J. Fluid Mech. 84, 497.
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1238.
Tavoularis, S. & Corrsin, S. 1981 J. Fluid Mech. 104, 311.
Townsend, A. A. 1954 Q. J. Mech. Appl. Maths 7, 104.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. 2nd edn. Cambridge University Press.
Townsend, A. A. 1980 J. Fluid Mech. 98, 171.
Tucker, H. J. & Reynolds, A. J. 1968 J. Fluid Mech. 32, 657.
Uberoi, M. S. 1957 J. Appl. Phys. 28, 1165.
Wygnanski, I. & Fiedler, H. E. 1970 J. Fluid Mech. 41, 327.